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Relational Nullable Types with Boolean Unification

MAGNUS MADSEN and JACO VAN DE POL, Aarhus University, Denmark

We present a simple, practical, and expressive relational nullable type system. A relational nullable type
system captures whether an expression may evaluate to null based on its type, but also based on the type of
other related expressions. The type system extends the Hindley-Milner type system with Boolean constraints,
supports parametric polymorphism, and preserves principal types modulo Boolean equivalence. We show
how to support full Hindley-Milner style type inference with an extension of Algorithm W.

We conduct a preliminary study of open source projects showing that there is a need for relational nullable
type systems across a wide range of programming languages. The most important findings from the study are:
(i) programmers use programming patterns where the nullability of one expression depends on the nullability
of other related expressions, (ii) such invariants are commonly enforced with run-time exceptions, and (iii)
reasoning about these programming patterns requires not only knowledge of when an expression may evaluate
to null, but also when it may evaluate to a non-null value. We incorporate these observations in the design of
the proposed relational nullable type system.
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1 INTRODUCTION

Null Ð infamously dubbed the łBillion Dollar Mistakež by its inventor Sir Tony Hoare Ð is a
special value that is an inhabitant of every type. The null value serves two distinct purposes: to
represent the absence of a value or as a place holder for an uninitialized value. Null is dangerous
because any attempt to use it as an ordinary value, e.g. by dereference or invocation, triggers
the dreaded NullPointerException crashing the program or, even worse, leading to undefined
behavior, depending on the semantics of the programming language.
A nullable type system prevents such crashes or undefined behavior by tracking, for every

expression, whether it may evaluate to null [Banerjee et al. 2019; Fähndrich and Xia 2007; Nieto
et al. 2020b; Summers and Müller 2011]. If an expression is nullable then the programmer must
explicitly check for null before the result of the expression can be used. If, on the other hand, an
expression is non-nullable then the type system guarantees that the expression cannot evaluate to
null at run-time. Thus the programmer does not have to check for null.
Recently, nullable type systems have become popular in mainstream programming languages.

New programming languages such as Kotlin, Swift, and TypeScript have adopted nullable type
systems from the start, whereas established languages such as C# and Scala are being retrofitted
with nullable type systems [Fähndrich and Leino 2003; Nieto et al. 2020b].
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In this paper we propose a novel relational nullable type system that captures not only nullability
of a single expression, but its nullability with respect to other related expressions. The type system
can enforce invariants such as: łthe expressions 𝑒1 and 𝑒2 cannot both be nullž, łthe expressions 𝑒1,
𝑒2, and 𝑒3 cannot all be non-nullž, or: łamong the expressions 𝑒1, 𝑒2, and 𝑒3 exactly one must be
nullž. For a more concrete example, imagine a method that takes two arguments: file and encoding

where either both arguments must be null or both arguments must be non-null.
We conduct a preliminary study of open source projects showing that there is a need for relational

nullable type systems across a wide range of programming languages. The most important findings
are that programmers use programming patterns where the nullability of one expression depends
on the nullability of other related expressions. Such programming patterns occur in imperative,
object-oriented, and functional languages, and without type system support, programmers currently
rely on runtime checks to enforce these relational nullability invariants.
To the best of our knowledge, contemporary nullable type systems, in the research literature

and in mainstream programming languages, only consider the nullability of a single expression.
That is, while several existing systems take into account that the nullability of an expression may
vary over time (e.g. during object construction), no existing system considers that the nullability of
one expression may depend on the nullability of other related expressions.
We propose a simple, practical, and expressive relational nullable type system to ensure the

safety of such programming patterns. The type system captures both may and must information
about nullity and non-nullity, i.e. whether an expression may or must evaluate to null and whether
it may or must evaluate to a non-null value. The type system enables a special form of pattern
matching on a sequence of expressions and their nullity. Unlike in a traditional pattern match, the
cases of such a match do not have to be exhaustive. Instead, the type system prevents matching on
expressions whose values could lead to an unmatched case at runtime. This is really the simplest
solution for programming with null: simply leave out cases that should not occur and the type
system ensures that they cannot occur.

An important property of the type system is that it supports full type inference. The key insight
is that the exhaustiveness condition can be translated into a Boolean formula which can be inferred
by an extension of Algorithm W because Boolean formulas have most general unifiers [Boole 1847;
Madsen and van de Pol 2020; Martin and Nipkow 1989].
While our work is presented in the context of null, it is equally applicable to relational uses of

the Option data type and it gives precise types to combinators such as filter, map, and flatMap.
The type system extends the Hindley-Milner type system, supports parametric polymorphism and
preserves principal types modulo Boolean equivalence.
In summary, the contributions of this paper are:

• (Preliminary Study) We conduct a preliminary study on the use of relational nullability
programming patterns in open source projects. We find that such patterns occur across a
wide range of programming languages (cf. Section 2).

• (Type System) We present a minimal calculus with null and a special pattern matching
construct named choose. We present a declarative type system for the calculus based on
Hindley-Milner extended with Boolean constraints and we show how to perform principal
type inference using an extension of Algorithm W (cf. Section 3 and 4).

• (Implementation) We provide two implementations of the calculus and type system: a proof-
of-concept that exactly mirrors the formal system and an extension of the Flix programming
language with relational nullable types (cf. Section 5).

In Section 6, we compare our contributions to related work on nullable type systems.
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2 PRELIMINARY STUDY

We now present a preliminary study on the use of relational nullability programming patterns in
real-world open source projects. The primary purpose of the study is twofold: to ascertain whether:
(i) there is a use case for relational nullable type systems, and (ii) to understand what features such
a system should support. That is, we want to understand if there is a problem, but not necessarily
the scope of the problem. We begin with a discussion of our methodology, next we present several
representative examples of the programming patterns we found, and finally we present a summary
of our most important quantitative findings.

2.1 Methodology

We used the www.grep.app website to search for relational nullability programming patterns in
open source projects hosted on GitHub. We searched for strings that are indicative of relational
nullable programming patterns. For example, the strings łcannot both be nullž and łcannot both be
non-nullž which are likely to occur in comments or error messages. We also searched for many
spelling variants of such strings, including łcan’t both be null’ and łcanot both be nullž (sic). We
also substitute łnull’ for łNULLž, łnilž, łNonež, łSomež, and so forth. In addition to these natural
language queries, we also searched for specific program fragments. For example, (None, None) =>

(a fragment of a pattern match on two None values). We collected the results from the queries and
manually inspected the results. We included a program fragment based on these selection criteria:

• the program fragment was a relational nullability programming pattern.
• the program fragment was readable (i.e. we excluded auto-generated or bizarre code.)
• the program fragment had an invariant within the reach of static type systems.1

• the program fragment was a not a duplicate (i.e. due to duplicated code on GitHub.)
• we limited the study to one program fragment per GitHub repository.
• we limited the study to programming languages with static type systems.

In total we collected 108 manually inspected program fragments that satisfied the above criteria.
The program fragments are available in the supplementary material. The preliminary study is only
the tip of the iceberg: The www.grep.app website only covers an estimated 0,5% of all public GitHub
repositories and our simple textual queries are unlikely to discover all relevant program fragments.
Yet, the study is still sufficient to demonstrate that there is a use case for relational nullable type
systems and to help inform the design of such type systems.

2.2 Selected Examples

We now discuss a few representative examples of the collected program fragments. Next, we present
the quantitative results of the study.

pmd/pmd (Java) pmd-core/src/main/java/net/sourceforge/pmd/util/database/DBType.java

1 public DBType(String subProtocol , String subnamePrefix) throws IOException {

2 /* omitted */

3 if (null == subProtocol && null == subnamePrefix) {

4 throw new RuntimeException("subProtocol and subnamePrefix cannot both be null");

5 }

6 /* omitted */

7 }

1For example, a program fragment that performs an RPC call over the network and expects a record with two null or
non-null fields is out of scope. This assumption is in line with most work on nullable type systems.
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The above code fragment, from the pmd/pmd project, shows part of the DBType constructor. The
constructor takes two arguments: subProtocol and subnamePrefix. If both are null the constructor
throws a RuntimeException to abort execution.

CloudburstMC/Nukkit (Java) src/main/java/cn/nukkit/OfflinePlayer.java

1 public OfflinePlayer(Server server , UUID uuid , String name) {

2 /* omitted */

3 if (uuid != null) {

4 nbt = this.server.getOfflinePlayerData(uuid , false );

5 } else if (name != null) {

6 nbt = this.server.getOfflinePlayerData(name , false );

7 } else {

8 throw new IllegalArgumentException("Name and UUID cannot both be null");

9 }

10 /* omitted */

11 }

The above code fragment, from the CloudburstMC/Nukkit project, shows part of the OfflinePlayer
constructor. The constructor takes three arguments: server, uuid, and name. If both uuid and name

are null the constructor throws an IllegalArgumentException to abort execution.

apache/druid (Java) sql/src/main/java/org/apache/druid/sql/calcite/rel/Projection.java

1 Projection(@Nullable final List <PostAggregator > postAggregators ,

2 @Nullable final List <VirtualColumn > virtualColumns ,

3 final RowSignature outputRowSignature) {

4 if (postAggregators == null && virtualColumns == null) {

5 throw new IAE("postAggregators and virtualColumns cannot both be null");

6 } else if (postAggregators != null && virtualColumns != null) {

7 throw new IAE("postAggregators and virtualColumns cannot both be nonnull");

8 }

9 /* omitted */

10 }

The above code fragment, from the apache/druid project, shows the Projection constructor
which takes three arguments: postAggregators, virtualColumns, and outputRowSignature. If both
postAggregators and virtualColumns are null then the constructor throws an IAE exception.
Similarly, if both postAggregators and virtualColumns are non-null then the constructor throws
an IAE exception. In other words, exactly one of the two arguments must be null.

openssl/openssl (C) crypto/ffc/ffc_params_generate.c

1 int ossl_ffc_params_FIPS186_4_gen_verify(/*...*/, FFC_PARAMS *params , /*...*/) {

2 /* omitted */

3 /* For generation: p & q must both be NULL or NON -NULL */

4 if ((params ->p == NULL) != (params ->q == NULL)) {

5 *res = FFC_CHECK_INVALID_PQ;

6 goto err;

7 }

8 /* omitted */

9 }

The above code fragment, from the openssl/openssl project, shows part of the ossl_ffc_params-
_FIPS186_4_gen_verify procedure. The procedure takes several parameters of which the params

argument must be a struct with two fields: p and q. The above fragment asserts that either: (i) both
p and q are NULL or (ii) both p and q are non-NULL.
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torvalds/linux (C) include/drm/drm_atomic_helper.h

1 drm_atomic_plane_disabling(struct drm_plane_state *old_plane_state ,

2 struct drm_plane_state *new_plane_state) {

3 /* omitted */

4 /*

5 * When disabling a plane , CRTC and FB should always be NULL together.

6 * Anything else should be considered a bug in the atomic core , so we

7 * gently warn about it.

8 */

9 WARN_ON (( new_plane_state ->crtc == NULL && new_plane_state ->fb != NULL) ||

10 (new_plane_state ->crtc != NULL && new_plane_state ->fb == NULL ));

11 return old_plane_state ->crtc && !new_plane_state ->crtc;

12 }

The above code fragment, from the torvalds/linux project, shows part of the drm_atomic-

_plane_disabling procedure. The procedure has a local variable new_plane_state which is a
struct with two fields: crtc and fb. As the comment explains, if either field is NULL the other field
must also be NULL. It is a bug if one field is NULL and the other is non-NULL.

rust-analyzer/rust-analyzer (Rust) crates/ide/src/completion/complete_record.rs

1 /* omitted */

2 match (ctx.record_pat_syntax.as_ref(), ctx.record_lit_syntax.as_ref ()) {

3 (None , None) => return None ,

4 (Some(_), Some(_)) => unreachable !("A record cannot be both ..."),

5 (Some(record_pat), _) => ctx.sema.record_pattern_missing_fields(record_pat),

6 (_, Some(record_lit )) => ctx.sema.record_literal_missing_fields(record_lit),

7 };

The above code fragment, from the rust-analyzer/rust-analyzer project, shows a program
fragment that does a pattern match on the two fields: ctx.record_pat_syntax and ctx.record_lit-

_syntax. If both fields are None the function returns None. If one or the other is Some then the pattern
match generates an error message. If both values are Some then the function triggers a łpanicž using
the unreachable! macro which aborts execution. As the Rust documentation explains2, a panic is
serious and should only be used when a program reaches an unrecoverable state.

snowplow/iglu (Scala) 0-common/igluctl/src/main/scala/.../ctl/commands/S3cp.scala

1 /* omitted */

2 val credentialsProvider = (accessKeyId , secretAccessKey , profile) match {

3 case (Some(keyId), Some(secret), None) =>

4 /*...*/ new BasicAWSCredentials(keyId , secret)

5 case (None , None , Some(p)) =>

6 /*...*/ new ProfileCredentialsProvider(p)

7 case (None , None , None) =>

8 /*...*/ DefaultAWSCredentialsProviderChain.getInstance ()

9 case _ =>

10 /*...*/ Error.ConfigParseError (" Invalid AWS authentication method ."))

11 }

The above code fragment, from the snowplow/iglu project, shows a pattern match on three
values: accessKeyId, secretAccessKey, and profile. The pattern match returns an error value if
either: (i) accessKeyId is Some and secretAccessKey is None (or vise versa), or if (ii) accessKeyId,
secretAccessKey, and profile are all Some.

2https://doc.rust-lang.org/std/macro.panic.html
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Fig. 1. Programming languages.

Assertion
Crash

Error 

Value

Exception

Unclassified

Fig. 2. Enforcement mechanism.

combust/mleap (Scala) mleap-core/src/main/scala/ml/combust/.../feature/StandardScalerModel.scala

1 case class StandardScalerModel(std: Option[Vector], mean: Option[Vector ]) {

2 /* omitted */

3 val size = (std , mean) match {

4 case (None , None) => throw new IllegalStateException ("...")

5 case (Some(stdV), None) => stdV.size

6 case (None , Some(meanV)) => meanV.size

7 case (Some(stdV), Some(meanV)) => stdV.size

8 }

9 /* omitted */

10 }

The above code fragment, from the combust/mleap project, shows the (inline) constructor for the
StandardScalerModel class. The constructor takes two arguments: std and mean. If both are None
then the constructor throws an IllegalStateException to abort execution.

2.3 Preliminary Results

We now present the quantitative results of the study. In total we found 108 program fragments that
satisfied the selection criteria. The fragments are available in the supplementary material.

2.3.1 Programming Languages. Figure 1 shows a breakdown of the programming languages that
each program fragment is written in. The figure shows that relational nullability programming
patterns arise across a wide range of programming languages, including in languages that have
null (e.g. C, C#, Go, Java), languages that have the Option / Maybe data type (e.g. Haskell, Rust),
and languages that have both null and Option (e.g. Scala). This is not too surprising: Inspection of
the program fragments reveals that relational nullability is a property of the problem domain.

2.3.2 Enforcement Mechanism. Figure 2 shows a breakdown of the enforcement mechanisms
used in the program fragments. Given that these programming languages do not have relational
nullable type systems, some other mechanism must be used to enforce such invariants. We grouped
these enforcement mechanisms into five categories: Assertion, Crash, Error Value, Exception, and
Unclassified. Most of the categories are self-explanatory. The Crash category covers enforcement
mechanisms more severe than exceptions, such as panic! in Rust and fatalError in Swift. The
Error Value covers enforcement mechanisms where the programmer returned a łmonadicž error
value such as Err of the Result data type. We used the Unclassified category for everything else or
when we were in doubt. The figure shows that most common enforcement mechanism is to throw
an exception. Together, Assertion (4%), Crash (15%), and Exception (41%) account for 60% of the
enforcement mechanisms. Thus, in lieu of type system support, violations of relation nullability
invariants cause run-time errors.
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2.3.3 Related Expressions. Figure 3 shows a breakdown of the number of expressions whose
nullability is inter-dependent. The figure shows that it is common to have two expressions whose
nullity depend on each other. However, there are also cases where the nullity of three expressions
depend on each other. We can imagine that as the number of related expressions grow the invariants
may become too complex for the programmer to understand and use. However, with better type
system support we believe that programmers might start to encodemore complex domain invariants.

This a common theme in programming language design. The introduction of a new feature that
makes it simpler and safer to use certain programming patterns may encourage the use of such
patterns and lead to a new way of writing programs.

2.3.4 May and Must Nullity. Figure 4 shows a breakdown of how many of the program fragments
require may and must information about the nullability or non-nullability of related expressions.
A standard nullable type system can guarantee that an expression cannot evaluate to null, but it
cannot enforce that an expression must evaluate to null. Thus it cannot capture a situation where
if 𝑒1 evaluates to null then 𝑒2 must also evaluate to null. The figure shows that may knowledge
is much more common than must knowledge. However, for approximately half of the program
fragments, both may and must knowledge is required to capture the relational nullability invariants.
This strongly suggests that a relational nullability type system must track two pieces of information:
the conditions under which an expression evaluates to null and the conditions under which it
evaluates to a non-null value.

2.4 Summary of Findings

We conclude with a summary of our most important observations:

• (Obs I): Programmers use programming patterns where the nullability of one expression
depends on the nullability of other related expressions.

• (Obs II): Programmers use such programming patterns across a wide range of languages,
including imperative, object-oriented, and functional languages.

• (Obs III): Reasoning about such patterns requires both may and must information.
• (Obs IV): Relational nullability typically depends on two or three expressions.
• (Obs V): In lieu of type system support, programmers currently rely on run-time checks to
enforce relational nullability invariants.

Interestingly, in the initial design of our relational nullable type system, we only considered
when an expression may evaluate to null, but the preliminary study demonstrated that it is equally
important to also capture when an expression must evaluate to null. Without the study, we would
have ended up with a less useful design.
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110:8 Magnus Madsen and Jaco van de Pol

3 MOTIVATION

We now give an informal introduction to the proposed calculus and type system. We work in an
ML-style programming language à la Standard ML or OCaml. We begin by introducing a special
constant null and a new pattern matching construct called choose. The choose construct allows us
to match on the nullity of a sequence of expressions. As we shall see, the choose construct mimics
many of the programming patterns shown in Section 2. The choose construct differs from a normal
pattern match in three important ways: (i) patterns can only match on nullity (i.e. null or non-null),
(ii) patterns cannot be nested, and (iii) patterns do not have to be exhaustive. The latter point is
worth emphasizing: In our system, a pattern match does not have to be exhaustive; instead the type
system restricts the types of the match expressions to the defined patterns.

3.1 Motivating Examples

Example I. The following program illustrates that we can pattern match on whether the value of
a single expression is null or non-null.

1 let f = x -> choose x {

2 case null => println ("x is null !")

3 case w => println ("x is non -null !")

4 };

5 f(null); // OK

6 f(1234) // OK

The program binds f to a lambda expression with argument x. The lambda expression uses the
choose construct to pattern match on the nullity of x. The match has two cases: one for when
x is null and one for when 𝑥 is non-null. Note that a variable pattern w only matches a non-null
value! The program is well-typed and prints "x is null!" followed by "x is non-null!"

when executed. The type of the function f is automatically inferred and in this case imposes no
requirement on the nullity of its argument x. Thus both calls to f type check.

Example II. The program below is a variant of the previous program with a single pattern for
when x is non-null:

1 let f = x -> choose x {

2 case w => println ("x is non -null !")

3 };

4 f(null); // NOT OK - type error

5 f(1234) // OK

In this case, the inferred type of the function f ensures that it cannot be called with a null
value. Thus the first call to f no longer type checks. (Recall that a variable pattern only matches
non-values.)

Example III. Conversely, the program below contains a single pattern for when x is null:

1 let f = x -> choose x {

2 case null => println ("x is null !")

3 };

5 f(null); // OK

6 f(123) // NOT OK - type error

Unlike most nullability systems, our system can enforce that a variablemust be null. For a pattern
match on a single expression this is may seem useless, but it becomes useful when matching on
multiple expressions.

Example IV. The previous examples all match on a single expression. The program below matches
on two variables x and y and handles the case where either (i) the values of both variables are null,
or (ii) the values of both variables are non-null.

1 let f = (x, y) -> choose (x, y) {

2 case (null , null) => println ("both null !")

3 case (u, v) => println ("both non -null !")

4 };

5 f(null , null); // OK

6 f(1234, 5678); // OK

7 f(1234, null); // NOT OK

8 f(null , 5678) // NOT OK
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The above program is well-typed and prints "x and y are both null!" followed by "x and

y are both non-null!" when executed. The inferred type of the function f ensures that it is a
type error to call it with a null and a non-null value (or vise versa).

Example V. If we modify the above program to:

1 let f = (x, y) -> choose (x, y) {

2 case (null , v) => println ("x is null and y is non -null .")

3 case (u, null) => println ("x is non -null and y is null .")

4 };

5 f(null , 1234); // OK

6 f(null , null) // NOT OK - type error

then the inferred type of the function f ensures that it can only be invoked with two values: exactly
one of which must be null and the other must be non-null.

As these examples demonstrate, an important property of our system is that:

Given a pattern match on the expressions 𝑒1, · · · , 𝑒𝑛 , the choose construct permits matching
on any subset of cases. If a case is omitted the type system enforces that the types of 𝑒1, · · · , 𝑒𝑛
cannot give rise to that case at run-time.

A corollary is that an exhaustive pattern match does not impose any requirements on the nullity of
𝑒1, · · · , 𝑒𝑛 . Conversely, an empty pattern match enforces that 𝑒1, · · · , 𝑒𝑛 must be uninhabited.

3.2 Type System

Wenow informally describe how the type systemworks. The typing judgement of an expression is of
the form Γ ⊢ 𝑒 : 𝜋 ? (𝜑,𝜓 ), where 𝜋 is a proper type (e.g. String), and 𝜑 and𝜓 are Boolean formulas,
called the nullity formulas of the type. The Boolean formula 𝜑 captures when the expression may
evaluate to null, while𝜓 captures when the expression may evaluate to a non-null value.
Consequently, the values null and non-null have the following types (for any 𝜑 and𝜓 ):

null : 𝛼 ? (T,𝜓 ) 𝑣 : 𝜋 ? (𝜑, T)

If we have an expression with a type of the form 𝜋 ? (F,𝜓 ) (for any 𝜋,𝜓 ) then the expression cannot
evaluate to null. Similarly, if we have an expression with a type of the form 𝜋 ? (𝜑, F) (for any 𝜋, 𝜑)
then the expression cannot evaluate to a non-null value. If we have an expression with a type of the
form 𝜋 ? (T, T) then we have no information; the expression could evaluate to null or to a non-null
value. For example, the expression łif 𝑐 then null else 123ž has the type Int ? (T, T) because the type
system combines the information from the two branches. Finally, if an expression has a type of the
form 𝜋 ? (F, F) then it cannot evaluate to any value at all; the type is uninhabited.
Let us now consider what the type of the function on the left should be:

1 let f = (x, y) -> choose (x, y) {

2 case (null , null) => 21

3 case (null , v) => 42

4 case (u, v) => 84

5 };

𝑃 =
©­«
0 0
0 1
1 1

ª®¬
⇒

(
0 ⊡

⊡ 1

)
= Saturate(𝑃)

For simplicity, let us assume that the types of x and y are of the form:

𝑥 : 𝜋1 ? (𝑋0, 𝑋1) 𝑦 : 𝜋2 ? (𝑌0, 𝑌1)

where 𝜋1 and 𝜋2 are proper types, and the Boolean variables (𝑋0, 𝑋1) and (𝑌0, 𝑌1) indicate the nullity
formulas of x and y.
We want to translate the pattern match into a constraint on 𝑋0, 𝑋1, 𝑌0, 𝑌1 that captures when

the pattern match is defined. The matrix 𝑃 , shown above, represents the value vectors matched
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by the pattern match, where 0 represents null, 1 represents a non-null value, and ⊡ represents a
wildcard. Note that an expression like (null, if 𝑐 then null else 123) corresponds to (0,⊡), which is
not covered by a single row of 𝑃 , although its concrete instances (0, 0) and (0, 1) are covered. To
remedy this, a saturation procedure (cf. Section 4.6), combines any two rows that differ in a single
entry. The result matrix Saturate(𝑃) covers all value vectors where either x is definitely null (i.e.
¬𝑋1), or y is definitely non-null (i.e. ¬𝑌0). Thus the exhaustiveness constraint is given by the side
condition ¬𝑋1 ∨ ¬𝑌0.

How dowe handle the side condition? At this point, we call a Boolean unification procedure on the
unification problem ¬𝑋1∨¬𝑌0

?
= T. This yields a most general unifier, for instance [𝑌0 ↦→ 𝑌0∧¬𝑋1].

We can now give the following type to the function 𝑓 :

𝑓 : 𝜋1 ? (𝑋0, 𝑋1) → 𝜋2 ? (𝑌0 ∧ ¬𝑋1, 𝑌1) → Int ? (F, T)

To understand why this is correct, let us consider what happens if we try to call 𝑓 where the first
argument is non-null. In this case, we know that 𝑋1 = T and thus the type of the second argument
simplifies to 𝜋2 ? (F, 𝑌1). But now the constraint on the second argument ensures that it cannot be
null! Indeed, the pattern match has no case for a (non-null, null) pair.

4 CALCULUS

We now present 𝜆rel
null

: a lambda calculus with a relational nullable type system. We then present an
extension of Algorithm W that enables Hindley-Milner style type inference. We begin with a brief
introduction to Boolean unification which is the key technique that enables type inference.

4.1 Preliminaries: Boolean Unification

Boolean Formulas. Let B = {T, F} denote the Boolean values true and false. Let BoolVar denote a
set of Boolean variables (𝛽 · · · ). The set of Boolean formulas is then defined inductively as:

𝜑,𝜓 ∈ Formula = 𝛽 | T | F | ¬𝜑 | 𝜑 ∧ 𝜑 | 𝜑 ∨ 𝜑

A valuation 𝑉 is a mapping from Boolean variables to {T, F}. Valuations are extended to evaluate
formulas, by means of the standard truth tables. We write 𝜑 ≡B 𝜓 if𝑉 (𝜑) = 𝑉 (𝜓 ) for all valuations
𝑉 (i.e. 𝜑 and𝜓 are logically equivalent). For example, we have:

T ≡B ¬F 𝑥 ≡B ¬(¬𝑥) 𝑥 ∧ 𝑦 ≡B 𝑦 ∧ 𝑥 𝑥 ∧ ¬𝑥 ≡B F ∧ 𝑧

Note that two formulas do not have to share the same variables to be equivalent. We write 𝜑 ⇒ 𝜓

if 𝜑 logically implies𝜓 . That is, for all valuations 𝑉 , if 𝑉 (𝜑) = T then 𝑉 (𝜓 ) = T.

Substitutions. A Boolean substitution 𝑆 is a partial mapping BoolVar ↩→ Formula. We write
{𝛽𝑖 ↦→ 𝜑𝑖 }𝑖∈𝐼 for the substitution 𝑆 , such that 𝑆 (𝛽𝑖 ) = 𝜑𝑖 . We extend substitutions to total functions
on formulas, and write𝜑𝑆 for the result of applying 𝑆 to𝜑 . The composition 𝑆1𝑆2 of two substitutions
𝑆1 and 𝑆2 is defined such that 𝜑 (𝑆1𝑆2) = (𝜑𝑆1)𝑆2. We write 𝑆1 ≤B 𝑆2 (substitution 𝑆1 is more general
than 𝑆2) iff there exists a substitution 𝑆3 such that for all 𝑥 ∈ 𝛽 , 𝑥𝑆1𝑆3 ≡B 𝑥𝑆2.

Definition 4.1 (Boolean Unification). Given formulas 𝜑 and 𝜓 the Boolean Unification Problem
𝜑

?
= 𝜓 is to compute a solution, i.e., a substitution 𝑆 such that 𝜑𝑆 ≡B 𝜓𝑆 , or to report that no

solution exists. A solution 𝑆 is a most general unifier (mgu), if 𝑆 ≤B 𝑆
′ for all other solutions 𝑆 ′.

Note that the most general unifier is not unique, not even modulo ≡B, but importantly the set
of all solutions can be represented by a single unifier, i.e. the Boolean unification problem is
unitary [Martin and Nipkow 1989].

Theorem 4.2 (Martin and Nipkow [1989]). Boolean Unification is decidable. Moreover, if 𝜑
?
= 𝜓

is solvable then there exists a most general unifier.
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The original result goes back Boole himself [Boole 1847]. The most general unifier can be
computed by the Successive Variable Elimination (SVE) algorithm [Martin and Nipkow 1989] or
Löwenheim’s algorithm [Löwenheim 1908]. In this paper, we shall not concern us with the specific
implementation details of these algorithms, but instead we refer the reader to [Martin and Nipkow
1989] and [Madsen and van de Pol 2020]. The existence of most general unifiers and algorithms to
compute them is what enables us to extend Algorithm W and ultimately to build a type inference
algorithm for the proposed relational nullable type system.
We now present a few examples of Boolean unification problems. We begin with:

𝑥 ∧ 𝑦
?
= T has mgu 𝑆 = {𝑥 ↦→ T, 𝑦 ↦→ T} (Example I)

𝑥 ∧ 𝑦
?
= F has mgu 𝑆 = {𝑥 ↦→ 𝑥 ∧ ¬𝑦} (Example II)

The substitution {𝑥 → F, 𝑦 → T} is another unifier for Example II, but it is not most general.
Other unifiers are {𝑥 → T, 𝑦 → F} and {𝑥 → ¬𝑦}, but none of these is most general, and all are
instances of the most general unifier given above. Note that the unifier is equi-general to another
most-general unifier {𝑦 → 𝑦 ∧ ¬𝑥}. There can be many unifiers and several most general unifiers,
but once we have one most general unifier, we can obtain all other unifiers by instantiating it.
The seemingly more complicated unification problem:

𝑥 ∨ 𝑦
?
= 𝑥 ∧ 𝑦 has mgu 𝑆 = {𝑥 ↦→ 𝑦} (Example III)

However, not all Boolean unification problems have solutions:

T
?
= F cannot be unified. (Example IV)

𝑥
?
= ¬𝑥 cannot be unified. (Example V)

4.2 Syntax and Semantics

Syntax. The syntax of the 𝜆rel
null

calculus (cf. Figure 5a) includes the standard lambda calculus
constructs: variables, constants, lambda abstractions, and function applications. The let-expression
allows polymorphic generalization, as is standard in Hindley-Milner. We include the if-then-else
expression to illustrate how the type system merges information from control-flow paths. Pairs
and projections illustrate that we can handle nested data types. The null value is our raison d’être.
The expression choose 𝑒𝑚 {𝑃 ⇒ 𝑒𝑏} enables pattern matching on a sequence of expressions. Note
that we use 𝑥 throughout the paper to denote finite sequences of the proper length.

𝑣 ∈ Val = 𝑐 | 𝜆𝑥. 𝑒 | (𝑣, 𝑣) | null

𝑒 ∈ Exp = 𝑥 | 𝑣 | 𝑒 𝑒

| let𝑥 = 𝑒 in 𝑒

| if 𝑒 then 𝑒 else 𝑒

| (𝑒, 𝑒) | fst 𝑒 | snd 𝑒

| choose 𝑒𝑚 {𝑃 ⇒ 𝑒𝑏 }

𝑃 ∈ Mat = 𝑚 × 𝑛 matrix of Pat
𝑝 ∈ Pat = ⊡ | 𝑥 | null

𝑐 ∈ Cst = a set of constants
𝑥,𝑦 ∈ Var = a set of variable symbols

(a) Syntax of 𝜆rel
null

.

𝜑 ∈ Formula = T | F | 𝛽 | ¬𝜑 | 𝜑 ∧ 𝜑 | 𝜑 ∨ 𝜑

𝜋 ∈ ProperType = 𝛼 | 𝜄 | 𝜏 → 𝜏 | 𝜏 × 𝜏

𝜏 ∈ NullableType = 𝜋 ? (𝜑,𝜓 )

𝜎 ∈ Scheme = 𝜏 | ∀𝛼. 𝜎 | ∀𝛽. 𝜎

𝜄 ∈ BaseType = Unit | Bool | Nat | String | · · ·

𝛼 ∈ TypeVar = a set of proper type variables
𝛽 ∈ BoolVar = a set of Boolean variables

(b) Types and Type Schemes of 𝜆rel
null

.

Fig. 5. Syntax and Types of 𝜆rel
null

.
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(𝜆𝑥 . 𝑒) 𝑣 → 𝑒 [𝑥 ↦→ 𝑣] (E-App)

let𝑥 = 𝑣 in 𝑒 → 𝑒 [𝑥 ↦→ 𝑣] (E-Let)

if true then 𝑒2 else 𝑒3 → 𝑒2 (E-Ite-1)

if false then 𝑒2 else 𝑒3 → 𝑒3 (E-Ite-2)

fst (𝑣1, 𝑣2) → 𝑣1 (E-Fst)

snd (𝑣1, 𝑣2) → 𝑣2 (E-Snd)

smallest 𝑖 s.t. 𝑆 ≜ matchRow(𝑃𝑖 , 𝑣)

choose 𝑣 {𝑃 ⇒ 𝑒𝑏 } → 𝑒𝑖
𝑏
𝑆

(E-Choose)

matchRow(𝑝, 𝑣) =
⋃

𝑖 matchPat(𝑝𝑖 , 𝑣𝑖 ) (M-Row)

matchPat(⊡, 𝑣) = [] (M-Wild)

matchPat(null, null) = [] (M-Null)

𝑣 ≠ null

matchPat(𝑥, 𝑣) = [𝑥 ↦→ 𝑣]
(M-Var)

Fig. 6. Evaluation Rules of 𝜆rel
null

.

The choose 𝑒𝑚 {𝑃 ⇒ 𝑒𝑏} expression is akin to a pattern match. The expression consists of the
following components: The vector of match expressions 𝑒𝑚 , the pattern matrix 𝑃 , and the vector
of expression bodies 𝑒𝑏 . We shall write 𝑃𝑖 for the 𝑖th row of the pattern matrix. We require that the
length of the match expression vector 𝑒𝑚 matches (no pun intended) the length of each row in the
pattern matrix 𝑃 , i.e. |𝑒𝑚 | = |𝑃𝑖 |. We also require that the number of rows equals the length of the
body vector, i.e. |𝑃 | = |𝑒𝑏 |. The entries of the pattern matrix consist of three types of patterns: A
wildcard ⊡ pattern, a null pattern, and a non-null pattern: variable 𝑥 . This opens a local scope for 𝑥 ,
which can only be used in the corresponding body 𝑒𝑖

𝑏
. We require that patterns are linear, i.e. a

variable cannot occur twice in the same pattern row 𝑃𝑖 .
A choose expression differs from a normal pattern match in three important ways: (i) a variable

pattern exclusively matches non-null values, (ii) patterns cannot be nested, and (iii) patterns do not
have to be exhaustive. Note that a consequence of (i) is that a wildcard pattern is not equivalent to
a variable pattern with a fresh variable name.

Semantics. The semantics of 𝜆rel
null

is based on a call-by-value small-step operational semantics
for the lambda calculus. Figure 6 shows the evaluation rules of 𝜆rel

null
. The evaluation rules are

standard. We write 𝑒 [𝑥 ↦→ 𝑣] for the capture avoiding substitution of 𝑥 ↦→ 𝑣 into 𝑒 , and extend
it to simultaneous substitutions 𝑒{𝑥1 ↦→ 𝑣1, . . . , 𝑥𝑛 ↦→ 𝑣𝑛}. We omit the congruence rules, but
intuitively evaluation always proceeds from left to right. The only rule that warrants discussion is
the evaluation rule for the choose construct.

The (E-Choose) rule states that if we have a choose expression where the match expression vector
has been reduced to a value vector 𝑣 then we look for the first row 𝑃𝑖 in the pattern matrix where
𝑃𝑖 matches 𝑣 . The partial function matchRow(𝑝, 𝑣) is defined when the value vector 𝑣 matches the
pattern vector 𝑝 . Otherwise, if there is no match between 𝑣 and 𝑝 , the function is undefined. When
defined, the function returns a substitution of the variables in the pattern vector. If row 𝑖 is the
first row where a pattern match is found, then the choose expression reduces to the match body
expression 𝑒𝑖

𝑏
with the substitution 𝑆 applied to it. If there is no match, the choose expression is

stuck. We shall show that the type system ensures that no expression ever gets stuck.
The (M-Row) rule defines the partial function matchRow(𝑝, 𝑣) as the union of the substitutions

of matchPat(𝑝𝑖 , 𝑣𝑖 ) for each pattern and value pair. We know from our syntactic requirement that
the length of 𝑝 and 𝑣 are the same. Moreover, we can safely compute the union of the substitutions
returned by matchPat(𝑝𝑖 , 𝑣𝑖 ) because the variables in 𝑝 are assumed to be disjoint (i.e. all patterns
are linear). If the partial functionmatchPat is undefined for any (𝑝𝑖 , 𝑣𝑖 ) thenmatchRow is undefined
for the whole vector (𝑝, 𝑣). The rules (M-Wild), (M-Null), and (M-Var) define when a pattern
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𝑝 matches a value 𝑣 . The rules are straightforward: A wildcard matches anything (but does not
bind any variable), the null pattern matches only the null value (and does not bind any variable),
and finally a variable pattern 𝑥 matches any non-null value and binds 𝑥 to that value. In other
words, the matchPat function is undefined in two cases: (i) when the pattern is null and the value
is non-null, and (ii) when the pattern is a variable 𝑥 and the value is null.

4.3 How 𝜆rel
null

Programs łGet stuckž

We briefly illustrate how 𝜆rel
null

programs may get stuck during evaluation. The obvious reason is
when null is applied as a function, or when null is used as a condition. Another reason why a
program gets stuck is if in a choose expression none of the cases apply to the match expressions:

choose null {case𝑥 ⇒ 𝑒} (Example I)

choose (123, null) {case (⊡, 𝑦) ⇒ 𝑒} (Example II)

choose (null, null) {case (⊡, 𝑦) ⇒ 𝑒1, case (𝑥,⊡) ⇒ 𝑒2} (Example III)

In Example I, the variable pattern does not match the null value. In Example II, the value vector
(123, null) does not match the single case in the pattern match. In Example III, the value vector
(null, null) does not match any of the two cases in the pattern match.

4.4 Declarative Type System

Mono Types. The types of 𝜆rel
null

are separated into proper types 𝜋 and nullable types 𝜏 , cf. Fig. 5b.
The proper types and nullable types are defined by mutual induction. The proper types 𝜋 include
types variables 𝛼 , a set of base types 𝜄 (e.g. Bool, Int, etc.), function types 𝜏1 → 𝜏2, and product
types 𝜏1 × 𝜏2. Nullable types 𝜏 are triples of the form 𝜋 ? (𝜑,𝜓 ) where 𝜋 is a proper type, and 𝜑 and
𝜓 are two Boolean formulas that capture the nullity of the type. Intuitively, 𝜑 and𝜓 capture when
an expression may evaluate to null and may evaluate to a non-null value. If 𝜑 ≡B F, the expression
cannot evaluate to null. Similarly, if𝜓 ≡B F, the expression cannot evaluate to a non-null value.

We extend Boolean equivalence to proper and nullable types, as the smallest relation such that:

• If 𝜏1 ≡B 𝜏 ′1 and 𝜏2 ≡B 𝜏
′
2 then both (𝜏1, 𝜏2) ≡B (𝜏 ′1, 𝜏

′
2) and 𝜏1 → 𝜏2 ≡B 𝜏

′
1 → 𝜏 ′2

• If 𝜋 ≡B 𝜋
′, 𝜑 ≡B 𝜑

′, and𝜓 ≡B 𝜓
′ then 𝜋 ? (𝜑,𝜓 ) ≡B 𝜋

′ ? (𝜑 ′,𝜓 ′)

A substitution 𝑆 is a mapping in (TypeVar → ProperType) ∪ (BoolVar → Formula), mapping type
variables to proper types and Boolean variables to formulas. We define 𝜏𝑆 = 𝜏 ′, the application of
substitution 𝑆 to type 𝜏 , in a standard way. In such a case, 𝜏 is said to be more general than 𝜏 ′. We
write 𝑆0𝑆1 for the substitution such that 𝜏 (𝑆0𝑆1) = (𝜏𝑆0)𝑆1.

Type Schemes. Type schemes 𝜎 extend nullable types by quantification over proper type variables
𝛼 and Boolean variables 𝛽 . That is, a type scheme is of the form ∀𝛾 . 𝜏 , where 𝛾 is a vector of proper
type variables and Boolean variables. Figure 5b shows the types and type schemes of 𝜆rel

null
.

We defineftv(𝜎) as the variables that occur free in𝜎 . These include unbound proper type variables
𝛼 and unbound Boolean variables 𝛽 . We extend substitutions to capture-avoiding substitutions on
type schemes (written 𝜎𝑆). We write 𝜎 ⊑ 𝜏 (type 𝜏 is an instance of type scheme 𝜎) if 𝜎 = ∀𝛾𝜏 ′ and
𝜏 ′𝑆 = 𝜏 for some substitution 𝑆 with dom(𝑆) = 𝛾 .

Type Rules. Figure 7 shows the declarative type rules of 𝜆rel
null

. A declarative typing judgement
is of the form Γ ⊢𝑑 𝑒 : 𝜏 . As is standard, the context Γ : Var ↩→ Scheme is a partial function from
variables to type schemes. We extend substitutions to contexts (Γ𝑆) and define ftv(Γ) as the union
of all free type variables in the range of Γ. The type judgement Γ ⊢𝑑 𝑒 : 𝜏 , which expands to
Γ ⊢𝑑 𝑒 : 𝜋 ? (𝜑,𝜓 ), states that the expression 𝑒 has proper type 𝜋 under type environment Γ with
nullity formulas 𝜑 and𝜓 . Most of the type rules are straightforward.
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Γ ⊢𝑑 𝑒 : 𝜏

Γ ⊢𝑑 𝑒 : 𝜏1 𝜏1 ≡B 𝜏2

Γ ⊢𝑑 𝑒 : 𝜏2
(T-Eq)

(𝑥, 𝜎) ∈ Γ 𝜎 ⊑ 𝜏

Γ ⊢𝑑 𝑥 : 𝜏
(T-Var)

typeOf(𝑐) = 𝜄

Γ ⊢𝑑 𝑐 : 𝜄 ? (𝜑, T)
(T-Cst)

Γ ⊢𝑑 null : 𝜋 ? (T,𝜓 )
(T-Null)

Γ ⊢𝑑 𝑒 : 𝜏1 × 𝜏2 ? (F,𝜓 )

Γ ⊢𝑑 fst 𝑒 : 𝜏1
(T-Fst)

Γ ⊢𝑑 𝑒 : 𝜏1 × 𝜏2 ? (F,𝜓 )

Γ ⊢𝑑 snd 𝑒 : 𝜏2
(T-Snd)

Γ ⊢𝑑 𝑒1 : 𝜏1 Γ ⊢𝑑 𝑒2 : 𝜏2

Γ ⊢𝑑 (𝑒1, 𝑒2) : (𝜏1 × 𝜏2) ? (𝜑, T)
(T-Pair)

Γ, 𝑥 : 𝜏1 ⊢𝑑 𝑒 : 𝜏2

Γ ⊢𝑑 𝜆𝑥 . 𝑒 : (𝜏1 → 𝜏2) ? (𝜑, T)
(T-Abs)

Γ ⊢𝑑 𝑒1 : (𝜏1 → 𝜏2) ? (F,𝜓 ) Γ ⊢𝑑 𝑒2 : 𝜏1

Γ ⊢𝑑 𝑒1 𝑒2 : 𝜏2
(T-App)

Γ ⊢𝑑 𝑒1 : 𝜏1 Γ, 𝑥 : gen(Γ, 𝜏1) ⊢𝑑 𝑒2 : 𝜏2

Γ ⊢𝑑 let𝑥 = 𝑒1 in 𝑒2 : 𝜏2
(T-Let)

Γ ⊢𝑑 𝑒1 : Bool ? (F,𝜓 ) Γ ⊢𝑑 𝑒2 : 𝜏 Γ ⊢𝑑 𝑒3 : 𝜏

Γ ⊢𝑑 if 𝑒1 then 𝑒2 else 𝑒3 : 𝜏
(T-Ite)

Γ ⊢𝑑 𝑒
𝑗
𝑚 : 𝜋 𝑗 ? (𝜑 𝑗 ,𝜓 𝑗 ) (∀𝑗)

Γ, ext(Γ, 𝑃𝑖 ) ⊢𝑑 𝑒𝑖
𝑏
: 𝜏 (∀𝑖)

𝑃 is exhaustive for (𝜑,𝜓 )

Γ ⊢𝑑 choose 𝑒𝑚 {𝑃 ⇒ 𝑒𝑏 } : 𝜏
(T-Choose)

gen(Γ, 𝜏) = ∀𝛾 . 𝜏 where 𝛾 = ftv(𝜏) \ ftv(Γ)

ext(Γ, 𝑃𝑖 ) = {𝑥 𝑗 : 𝜋 𝑗 ? (𝜒𝑖, 𝑗 , T) | 𝑃𝑖, 𝑗 = 𝑥 𝑗 }

Fig. 7. Declarative Type Rules for 𝜆rel
null

. A typing judgement is of the form Γ ⊢𝑑 𝑒 : 𝜏 where 𝜏 is nullable type.

The expanded form is Γ ⊢𝑑 𝑒 : 𝜋 ? (𝜑,𝜓 ) where 𝜋 is a proper type and 𝜑 and𝜓 are Boolean formulas.

The (T-Eq) rule states that if an expression 𝑒 can be typed as 𝜏1, that type can be replaced by
any equivalent type 𝜏2 ≡B 𝜏1. The (T-Var) rule is the standard Hindley-Milner instantiation rule. It
states that if the assumption 𝑥 : 𝜎 is in the context, then we can instantiate 𝜎 to a specific type 𝜏 ,
and conclude 𝑥 : 𝜏 . The (T-Cst) rule states that constants can be assigned a base type 𝜄, according
to the typeOf function. The nullity (𝜑, T) encodes that a constant is not null: the constant may
evaluate to non-null. The polymorphic 𝜑 indicates it may or may not evaluate to null. This is
always sound, and the flexibility in choosing 𝜑 allows the constant to occur in a branch together
with null-values. The (T-Null) rule states that the polymorphic type of null is any proper type 𝜋
with nullity formulas (T,𝜓 ): It may evaluate to null (T), but it can occur in a branch together with
non-null values (𝜓 ). The (T-Pair), (T-Fst), and (T-Snd) rules type pairs and projections. The (T-Pair)
rule states that a pair is not null (𝜑, T). The projection rules (T-Fst), (T-Snd) require that a pair
cannot evaluate to null (F, 𝜑). The (T-Abs) and (T-App) rules are straightforward. The (T-Abs) rule
states that an abstraction is non-null. The (T-App) rule requires that the applied lambda abstraction
must be non-null. The (T-Let) rule is the standard Hindley-Milner generalization rule. The rule
states that if we can type 𝑒1 as 𝜏1 under the environment Γ then we may generalize the type 𝜏1 to a
type scheme 𝜎 , and type 𝑒2 under an extended environment with 𝑥 : 𝜎 . The (T-Ite) rule requires
that the condition is a non-null Boolean and that the two branches have the same type.
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4.5 Type Checking and Pattern Matching

We now present the type rule (T-Choose). In Section 4.7, we will discuss a strict extension of the
system with rule (T-Choose-★), which allows relational nullable polymorphism.

Given the expression choose 𝑒𝑚 {𝑃 ⇒ 𝑒𝑏}, where 𝑒𝑚 is the vector of match expressions, 𝑃 is the
pattern matrix, and 𝑒𝑏 is the vector of body expressions, (T-Choose) imposes three requirements:

• We require that for each column 𝑗 , the match expression can be typed as in Γ ⊢𝑑 𝑒
𝑗
𝑚 : 𝜏 𝑗 ?

(𝜑 𝑗 ,𝜓 𝑗 ) Ð all match expressions 𝑒 𝑗𝑚 can have different types 𝜏 𝑗 and nullity formulas (𝜑 𝑗 ,𝜓 𝑗 ).
• We also require that the body expression of each row 𝑖 can be typed in an extended envi-
ronment, as in Γ ∪ Γ𝑖 ⊢𝑑 𝑒𝑖

𝑏
: 𝜏 . Note that a choice is a similar dataflow merge point as an

if-then-else expression. Here we require that all possible body expressions have the same
type 𝜏 . This restriction will be lifted later in (T-Choose-★). The body 𝑒𝑖

𝑏
may use variables

that are introduced (bound) in the pattern. So the extended context Γ𝑖 extracts all variables
from the non-null patterns in row 𝑃𝑖 , i.e. those for which 𝑃𝑖, 𝑗 is a variable 𝑥 𝑗 . Their proper

type should be the same as the corresponding match expression 𝑒
𝑗
𝑚 : 𝜋 𝑗 . We add the nullity

assumption (𝜒𝑖, 𝑗 , T), which captures that row 𝑖 is only chosen when 𝑒 𝑗𝑚 is non-null (since 𝑃𝑖, 𝑗
requested a non-null value for 𝑥 𝑗 ).

• Finally, we require that the pattern matrix 𝑃 must be exhaustive for the vectors 𝜑 and𝜓 .

Pattern Matrix Exhaustiveness. Intuitively, 𝑃 is exhaustive, if it has a matching row for each
possible value of the match expressions 𝑒𝑚 . We only have to consider their nullity: 0 (for the null
value) and 1 (for any non-null value). We first define the possible nullity values of an expression
𝑒 : 𝜋 ? (𝑏, 𝑐), for Boolean values 𝑏, 𝑐 ∈ B. Recall that 𝑏 indicates that 𝑒 may be null and 𝑐 indicates
that 𝑒 may be a non-null value. For a vector 𝑒 : 𝜋 ? (𝑏, 𝑐), the possible nullity vectors are all
combinations of the nullity values of its elements:

values(T, T) = {0, 1} values(T, F) = {0} values(F, T) = {1} values(F, F) = ∅

valuesRow(𝑏, 𝑐) = values(𝑏1, 𝑐1) × · · · × values(𝑏𝑛, 𝑐𝑛)

In particular, note that if one of the match expressions 𝑒𝑖 has nullity (F, F), then the whole vector is
uninhabited (∅). Next, we define which nullity values are covered by a single pattern, and by a row
of patterns:

covers(null) = {0} covers(𝑥) = {1} covers(⊡) = {0, 1}

coversRow(𝑝) = covers(𝑝1) × · · · × covers(𝑝𝑛)

We can now finally state when a pattern matrix is exhaustive:

Definition 4.3 (Exhaustiveness). A pattern matrix 𝑃 is exhaustive for the nullity formulas (𝜑,𝜓 ),
if for all valuations 𝑉 , and for all 𝑎 ∈ valuesRow(𝑉 (𝜑),𝑉 (𝜓 )), there exists a row 𝑃𝑖 in 𝑃 , such that
𝑎 ∈ coversRow(𝑃𝑖 ).

Example 4.4. Let 𝑒1 : 𝜋 ? (F, 𝛽) and let 𝑒2 : 𝜋 ? (T, T). We check exhaustiveness of the expression:

choose (𝑒1, 𝑒2) {case (⊡, 𝑥) ⇒ · · · , case (𝑦, null) ⇒ · · ·}

Note that 𝑒1 must be a non-null value at runtime and that 𝑒2 will be either null or a non-null value.
For 𝛽 = F, valuesRow is empty. For 𝛽 = T, valuesRow((F, 𝛽), (T, T)) = {1} × {0, 1} = {(1, 0), (1, 1)}.
Pattern row (⊡, 𝑥) covers instances {(0, 1), (1, 1)} and pattern row (𝑦, null) covers the instance
{(1, 0)}. So the value vector (1, 0) is covered by the second row, and the value vector (1, 1) is
covered by the first row. Thus the pattern matrix is exhaustive for these match expressions.
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Soundness. We now match the nullity formulas (𝜑,𝜓 ) derived by the type system with the actual
nullity of the values. The following łCanonical Forms Lemmaž is essentially proved by inspecting
the last applied derivation rule.

Lemma 4.5. Let 𝑣 be a typeable value with Γ ⊢𝐷 𝑣 : 𝜋 ? (𝜑,𝜓 ). Then:

(1) If 𝑣 = null then 𝜑 ≡B T.
(2) If 𝑣 ≠ null, then𝜓 ≡B T.

We can now prove that, when we get to a well-typed choose expression at runtime, the exhaustive
pattern matrix will always have a matching row, so the choose cannot łget stuckž:

Lemma 4.6. Let 𝑣 , 𝜑 and 𝜓 be given. Assume Γ ⊢𝐷 𝑣 𝑗 : 𝜋 𝑗 ? (𝜑 𝑗 ,𝜓 𝑗 ) (for each 𝑗). Assume that
pattern matrix 𝑃 is exhaustive for (𝜑,𝜓 ). Then matchRow(𝑃𝑖 , 𝑣) must be defined for some row 𝑖 in 𝑃 .

Proof. Assume Γ ⊢𝐷 𝑣 𝑗 : 𝜋 𝑗 ? (𝜑 𝑗 ,𝜓 𝑗 ). Define 𝑎 𝑗 := 0, if 𝑣 𝑗 = null and 𝑎 𝑗 := 1, otherwise.
We claim (*) that 𝑎 ∈ ValuesRow(𝑉 (𝜑),𝑉 (𝜓 )) for all valuations 𝑉 . Then, since 𝑃 is exhaustive,
we obtain that there is a row 𝑖 such that 𝑎 ∈ coversRow(𝑃𝑖 ), i.e. for each 𝑗 , 𝑎 𝑗 ∈ covers(𝑃𝑖, 𝑗 ). By
comparing the definition of covers and matchPat, we see that this implies that matchPat(𝑃𝑖, 𝑗 , 𝑣 𝑗 )
is defined for each 𝑗 . But then also matchRow(𝑃𝑖 , 𝑣) is defined.

Now we prove the claim (*) that 𝑎 ∈ ValuesRow(𝑉 (𝜑),𝑉 (𝜓 )), i.e. 𝑎 𝑗 ∈ Values(𝑉 (𝜑 𝑗 ),𝑉 (𝜓 𝑗 )), for
each 𝑗 . If 𝑎 𝑗 = 0 then 𝑣 𝑗 = null and by Lemma 4.5, 𝜑 𝑗 ≡B T, so 𝑉 (𝜑 𝑗 ) = T. Similarly, if 𝑎 𝑗 = 1 then
𝑣 𝑗 ≠ null and by Lemma 4.5, 𝜓 𝑗 ≡B T, so 𝑉 (𝜓 𝑗 ) = T. In both cases, 𝑎 𝑗 ∈ Values(𝑉 (𝜑 𝑗 ),𝑉 (𝜓 𝑗 )) by
the definition of Values. □

We are now in the position to state soundness of our declarative type system. The following two
theorems guarantee that well-typed expressions cannot łget stuckž:

Theorem 4.7 (Progress). Suppose e is a closed, well-typed expression (that is, ⊢𝑑 𝑒 : 𝜏 for some 𝜏).
Then either 𝑒 is a value or else there is some expression 𝑒 ′ such that 𝑒 → 𝑒 ′.

Theorem 4.8 (Preservation). If Γ ⊢𝑑 𝑒 : 𝜏 and 𝑒 → 𝑒 ′ then Γ ⊢𝑑 𝑒 ′ : 𝜏 .

4.6 Type Inference with Algorithm W and Boolean Unification

We now turn to type inference. Figure 8 presents an extension to the classical Algorithm W. It
derives judgements of the form Γ ⊢𝑤 𝑒 : 𝜏 ; 𝑆 . The judgement should be read as: Given as input a
context Γ and an expression 𝑒 , compute as output its most general type 𝜏 and a substitution to the
type variables, such that Γ𝑆 ⊢𝑑 𝑒 : 𝜏 . If 𝑒 is not typeable in an instance of Γ, then the algorithm
should fail. This happens for instance when some unification problem fails.

The rules are syntax directed: for each expression it is clear which rule to use. The antecedents
should be executed in sequential order (top to bottom). There are three types of antecedents:

• Recursive calls to the algorithm ⊢𝑤 and repeated recursive calls ⊢∗𝑤 . For instance, (W-Abs) has a
simple recursive call, and (W-Pair) has a repeated recursive call. We write Γ ⊢∗𝑤 𝑒1, 𝑒2 : 𝜏1, 𝜏2; 𝑆
as an abbreviation of the two calls Γ ⊢𝑤 𝑒1 : 𝜏 ′1; 𝑆1 and Γ𝑆1 ⊢𝑤 𝑒2 : 𝜏 ′2; 𝑆2. The returned types
are (𝜏1, 𝜏2) := (𝜏 ′1𝑆2, 𝜏

′
2) and the substitution is 𝑆 := 𝑆1𝑆2. This can be generalized to three calls

(W-Ite) or even an arbitrary number of calls (W-Choose), resembling a fold-operation.
• The creation of fresh type variables (proper type variables and nullity variables). This is
presented as a non-functional operation, but we implemented a functional version, where
fresh variables are derived in a canonical manner from the call graph of Algorithm W.

• Unification problems of the form 𝑆 = (𝑡1
?
= 𝑡2). This denotes that substitution 𝑆 is the most

general unifier of 𝑡1 and 𝑡2. If the terms cannot be unified, AlgorithmW fails. Type unification
proceeds by structural matching with occurs check, as in Martelli-Montanari [Martelli and
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Γ ⊢𝑤 𝑒 : 𝜏 ; 𝑆

𝛼, 𝛽 fresh

Γ ⊢𝑤 null : 𝛼 ? (T, 𝛽); 𝑖𝑑
(W-Null)

typeOf(𝑐) = 𝜄

𝛽 fresh

Γ ⊢𝑤 𝑐 : 𝜄 ? (𝛽, T); 𝑖𝑑
(W-Cst)

(𝑥, 𝜎) ∈ Γ 𝜏 = inst(𝜎)

Γ ⊢𝑤 𝑥 : 𝜏 ; 𝑖𝑑
(W-Var)

Γ ⊢∗𝑤 𝑒1, 𝑒2 : 𝜏1, 𝜏2; 𝑆
𝛽 fresh

Γ ⊢𝑤 (𝑒1, 𝑒2) : 𝜏1 ∗ 𝜏2 ? (𝛽, T); 𝑆
(W-Pair)

Γ ⊢∗𝑤 𝑒1, 𝑒2 : 𝜏1, 𝜏2; 𝑆0
𝛼, 𝛽,𝛾, 𝛽1 fresh

𝑆1 = (𝜏1
?
= (𝜏2 → (𝛼 ? (𝛽,𝛾)) ? (F, 𝛽1)))

Γ ⊢𝑤 𝑒1𝑒2 : (𝛼 ? (𝛽,𝛾))𝑆1; 𝑆0𝑆1
(W-App)

𝛼, 𝛽,𝛾, 𝛽1 fresh
Γ, 𝑥 : (𝛼 ? (𝛽,𝛾)) ⊢𝑤 𝑒 : 𝜏 ; 𝑆

Γ ⊢𝑤 𝜆𝑥 .𝑒 : (𝛼 ? (𝛽,𝛾))𝑆 → 𝜏 ? (𝛽1, T); 𝑆
(W-Abs)

Γ ⊢𝑤 𝑒 : 𝜏 ; 𝑆1
𝛼1, 𝛽1, 𝛾1, 𝛼2, 𝛽2, 𝛾2, 𝛽 fresh

𝑆2 = (𝜏
?
= ((𝛼1 ? (𝛽1, 𝛾1)) ∗ (𝛼2 ? (𝛽2, 𝛾2)) ? (F, 𝛽)))

Γ ⊢𝑤 𝐹𝑠𝑡 (𝑒) : (𝛼1 ? (𝛽1, 𝛾1))𝑆2; 𝑆1𝑆2
Γ ⊢𝑤 𝑆𝑛𝑑 (𝑒) : (𝛼2 ? (𝛽2, 𝛾2))𝑆2; 𝑆1𝑆2

(W-Fst / W-Snd)

Γ ⊢∗𝑤 𝑒1, 𝑒2, 𝑒3 : 𝜏1, 𝜏2, 𝜏3; 𝑆0
𝛽 fresh

𝑆1 = (𝜏1
?
= Bool ? (F, 𝛽))

𝑆2 = (𝜏2𝑆1
?
= 𝜏3𝑆1)

Γ ⊢𝑤 if 𝑒1 then 𝑒2 else 𝑒3 : 𝜏2𝑆1𝑆2; 𝑆0𝑆1𝑆2
(W-Ite)

Γ ⊢𝑤 𝑒1 : 𝜏1; 𝑆1 𝜎 = gen(Γ𝑆1, 𝜏1)

Γ𝑆1, 𝑥 : 𝜎 ⊢𝑤 𝑒2 : 𝜏2; 𝑆2

Γ ⊢𝑤 let𝑥 = 𝑒1 in 𝑒2 : 𝜏2; 𝑆1𝑆2
(W-Let)

Γ ⊢∗𝑤 𝑒𝑚 : 𝜋 ? (𝜑,𝜓 ); 𝑆0
𝛽𝑖, 𝑗 fresh variables

Γ𝑒𝑥𝑡,𝑖 = {𝑥 𝑗 : 𝜋 𝑗 ? (𝛽𝑖, 𝑗 , T) | 𝑃𝑖, 𝑗 = 𝑥 𝑗 }

(Γ ∪ Γ𝑒𝑥𝑡 )𝑆0 ⊢
∗
𝑤 𝑒𝑏 : 𝜏 ; 𝑆1

𝑆2 = {𝜏𝑖
?
= 𝜏𝑖+1 | 0 ≤ 𝑖 < |𝑒𝑏 |}

𝑆3 = (MatrixFormula(𝑃, ®𝜑, ®𝜓 )𝑆1𝑆2
?
= T)

Γ ⊢𝑤 choose 𝑒𝑚 {𝑃 ⇒ 𝑒𝑏 } : 𝜏0𝑆2𝑆3; 𝑆0𝑆1𝑆2𝑆3
(W-Choose)

inst(∀𝛾 .𝜏) = 𝜏 [𝛾 := 𝛽] for fresh variables 𝛽 gen(Γ, 𝜏) = ∀𝛾 .𝜏, where 𝛾 = ftv(𝜏) \ ftv(Γ)

Fig. 8. Type Rules of Algorithm W for 𝜆rel
null

.

Montanari 1982], until two Boolean formulasmust be unified. For Boolean unification (Sec. 4.1)
we use successive variable elimination [Martin and Nipkow 1989]. We refer to [Madsen and
van de Pol 2020] for a detailed description of the combination.

All rules, except (W-Choose), extend the standard rules of Algorithm W by propagating the
nullity information. Note how łarbitrary formulasž (𝜑,𝜓 ) in the conclusions of the T-rules are
implemented by fresh type variables in the corresponding W-rules (e.g. in the constructors (W-

Null), (W-Cst), (W-Pair) and (W-Abs)). These variables can become instantiated by further calls
to Algorithm W. On the other hand, checks for nullity in the T-rules are implemented by unifying
formulas with F in the corresponding W-rules (e.g. in the destructors (W-App), (W-Fst), (W-Snd),
(W-Ite)). When the T-rules require equal types, the W-rules implement this by unification (e.g.
in (W-App), (W-ite) and (W-Choose)). Hence, Algorithm W does not need the equivalent of the
(T-Eq)-rule. The (W-Let) rule implements the standard generalization of types.

There is a small implementation detail: for generalization, the formulas in the context must be
simplified to eliminate non-essential variables.3

3For instance, 𝛽 ∨¬𝛽 should be simplified to T, to avoid blocking the generalization of 𝛽 , ultimately leading to a less general
type. This can be achieved by representing Boolean formulas in canonical form, such as BDDs or Boolean Rings.
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The rule (W-Choose) requires extra explanation. First, note the definition of the extended
contexts Γ𝑒𝑥𝑡,𝑖 . Here (𝛽𝑖, 𝑗 , T) encodes that a variable 𝑥 𝑗 in a pattern 𝑃𝑖 matches a non-null value.
The polymorphic fresh variable 𝛽𝑖, 𝑗 can become instantiated when unifying it with types from
other branches. By a slight abuse of notation, the following ⊢∗𝑤 uses different contexts Γ ∪ Γ𝑒𝑥𝑡,𝑖 in
each iteration. Recall that substitution 𝑆0 is accumulated and threaded through this computation,
resulting in the final 𝑆1.
Next, we explain how we can infer the proper nullity information. A crucial step is to define a

Matrix Formula that expresses the exhaustiveness of the pattern matrix 𝑃 . The strategy to generate
this matrix formula is (1) to create an łabstractž pattern matrix from 𝑃 ; (2) to saturate (and minimize)
the pattern matrix; and (3) to transform the saturated pattern matrix to a Boolean formula.

The abstract pattern matrix 𝑄 = Abstract(𝑃) consists of values in {0, 1,⊡}, and is obtained from
the pattern matrix 𝑃 by replacing all its pattern variables by a 1. Given the typed match expressions
𝑒
𝑗
𝑚 : 𝜋 𝑗 ? (𝜑 𝑗 ,𝜓 𝑗 ) and an abstract pattern matrix 𝑄 , we define a Boolean formula that expresses
that 𝑒𝑚 is guaranteed to match some row 𝑖 of 𝑄 . In words, expressions matching a 1 cannot be
null (¬𝜑 𝑗 ) and expressions matching a 0 cannot be non-null (¬𝜓 𝑗 ). We ensure that we don’t impose
unnecessary restrictions for uninhabited types (F, F):

Inhabited(𝜑,𝜓 ) =
∧
𝑗

(𝜑 𝑗 ∨𝜓 𝑗 )

matchesRow(𝑄𝑖 , 𝜑,𝜓 ) =
∧
𝑗

{¬𝜑 𝑗 | 𝑄𝑖 𝑗 = 1} ∧
∧
𝑗

{¬𝜓 𝑗 | 𝑄𝑖 𝑗 = 0}

matchesMatrix(𝑄,𝜑,𝜓 ) =
∨
𝑖

{matchesRow(𝑄𝑖 , 𝜑,𝜓 )}

MatrixFormula(𝑃, 𝜑,𝜓 ) = ¬Inhabited(𝜑,𝜓 ) ∨matchesMatrix(Saturate(Abstract(𝑃)), 𝜑,𝜓 )

The main reason why saturation must be applied, is that matchesMatrix requires that the
match expressions are covered by a single row in the matrix. However, this is too strong, since an
exhaustive matrix only requires that each instance of these expressions is covered by some row. By
combining information from multiple rows into a single row, the saturated matrix has the property
that it covers the match expressions by a single row. Before defining the saturation procedure in
detail, we motivate and explain it with an example.

Example 4.9. Consider the program fragment

choose (null, 5, if𝑏 then 17 else null) {case (null, 𝑥,𝑦) ⇒ · · · , case (⊡, 𝑧, null) ⇒ · · ·}

The match expressions (null, 5, if𝑏 then 17 else null) have most general nullity information (T, 𝛽1),
(𝛽2, T) and (T, T), i.e. their nullity vectors are 𝜑 = (T, 𝛽2, T) and𝜓 = (𝛽1, T, T). Note that in this case,
Inhabited(𝜑,𝜓 ) ≡B T. The corresponding nullity vectors are {0} × {1} × {0, 1} = {(0, 1, 0), (0, 1, 1)}.
We match (𝜑,𝜓 ) against the abstract pattern matrix of the two cases, which is 𝑄1 on the left:

𝑄1
=

(
0 1 1
⊡ 1 0

)
⇒ 𝑄2

=
©­«

0 1 1
⊡ 1 0
0 1 ⊡

ª®¬
⇒ 𝑄3

=

(
⊡ 1 0
0 1 ⊡

)

Note that the nullity vectors are not covered by a single row, although value (0, 1, 0) is covered
by the second row and (0, 1, 1) is covered by the first row. We saturate this matrix by adding a third
row, which combines the łshared informationž of the original rows (see middle matrix 𝑄2). Note
that both nullity vectors are now covered by the new row in the saturated matrix. Finally, we can
simplify the pattern matrix, since the first row is subsumed by the new third row (𝑄2

1 covers a subset
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of the nullity vectors covered by 𝑄2
3). This results in the matrix 𝑄3. Simplification is not obligatory,

but it helps in reducing the final formula. For this example, the generated Matrix Formula is:

matchesRow(𝑄3
1, 𝜑,𝜓 ) ∨matchesRow(𝑄3

2, 𝜑,𝜓 ) = (¬𝛽2 ∧ ¬T) ∨ (¬𝛽1 ∧ ¬𝛽2) ≡B ¬𝛽1 ∧ ¬𝛽2

Algorithm W unifies ¬𝛽1 ∧ ¬𝛽2
?
= T, yielding the most general substitution {𝛽1 ↦→ F, 𝛽2 ↦→ F}. □

We now define the saturation and simplification procedure more formally. Define a partial order
on abstract patterns {0, 1,⊡} by the following laws:

0 ≤ ⊡ 1 ≤ ⊡ 𝑥 ≤ 𝑥

The corresponding greatest lowerbound on elements is defined by the following laws:

𝑥 ⊓ ⊡ = 𝑥 ⊡ ⊓ 𝑥 = 𝑥 𝑥 ⊓ 𝑥 = 𝑥

Note that 0 ⊓ 1 and 1 ⊓ 0 are undefined, since 0 and 1 have no common lowerbound in this partial
order. Next, extend this partial order and the partial greatest lowerbound function in a pointwise
fashion to vectors; in particular, we will apply them to rows in the pattern matrix.
Define the partial operation ⊕ to combine compatible rows as follows:

(𝑥0, 1, 𝑥1) ⊕ (𝑦0, 0, 𝑦1) = (𝑧0,⊡, 𝑧1), iff 𝑧0 := 𝑥0 ⊓ 𝑦0 and 𝑧1 := 𝑥1 ⊓ 𝑦1 are defined.

Example 4.10. In Example 4.9, 𝑄2
1 ≤ 𝑄2

3 since in the third column, 1 ≤ ⊡. The third row in 𝑄2 is
explained by (0, 1, 1)⊕(⊡, 1, 0) = (0, 1,⊡), with𝑥0 = (0, 1),𝑦0 = (⊡, 1), and 𝑧0 = (0, 1)⊓(⊡, 1) = (0, 1).
In this example, the rightmost vectors 𝑥1 = 𝑦1 = 𝑧1 = (). □

Definition 4.11 (Saturated and Minimal). An abstract pattern matrix 𝑄 is saturated, if for every
two rows 𝑄𝑖 and 𝑄 𝑗 , if 𝑄𝑖 ⊕ 𝑄 𝑗 is defined, then there is a row 𝑄𝑘 with 𝑄𝑖 ⊕ 𝑄 𝑗 ≤ 𝑄𝑘 .
An abstract pattern matrix 𝑄 is minimal, if for no two different rows 𝑄𝑖 and 𝑄 𝑗 , 𝑄𝑖 ≤ 𝑄 𝑗 .

Lemma 4.12. For every abstract pattern matrix 𝑄 , there exists a unique (modulo order of rows)
saturated and minimal matrix Saturate(Q).

Proof. We first saturate the matrix, by repeatedly applying saturation steps: While 𝑄𝑖 and 𝑄 𝑗

are rows in the matrix and𝑄𝑖 ⊕𝑄 𝑗 is defined but not a row in the matrix, then add the row𝑄𝑖 ⊕𝑄 𝑗 .
Since we only add rows, and the number of possible different rows is finite, this process terminates
with a unique result (modulo the order of rows) and yields a saturated matrix.

Next, we simplify the matrix by minimization steps: While 𝑄𝑖 and 𝑄 𝑗 are different rows with
𝑄𝑖 ≤ 𝑄 𝑗 , remove row 𝑄𝑖 . Since we only remove rows, this process terminates with a unique result:
the set of minimal rows, hence it yields a minimal matrix. Note that every minimization step keeps
the matrix saturated (since 𝑄 𝑗 still covers everything covered by 𝑄𝑖 ).
So the result is uniquely defined (modulo row order), minimal, and saturated. □

In Example 4.9, 𝑄1 ⇒ 𝑄2 was a saturation step and 𝑄2 ⇒ 𝑄3 was a minimization step.4

Lemma 4.13. Let 𝑄 be an abstract pattern matrix.

(1) Saturate(Q) covers the same nullity vectors as 𝑄 ;
(2) If 𝑄 is saturated and covers all nullity vectors in valuesRow(𝑏, 𝑐),

then these are already covered by a single row 𝑄𝑖 ;
(3) ł𝑃 is exhaustive for 𝜑,𝜓 ž ≡B MatrixFormula(𝑃, 𝜑,𝜓 ).

Proof. (1) In saturation, we add a row 𝑄𝑖 ⊕ 𝑄 𝑗 , but all its instances are already covered by either 𝑄𝑖

or by 𝑄 𝑗 . In minimization, we remove row 𝑄𝑖 , but all its instances are also covered by 𝑄 𝑗 .

4In the implementation, we minimize the matrix initially and after each saturation step, and we only add𝑄𝑖 ⊕𝑄 𝑗 if it is not

yet covered by any𝑄𝑘 , in order to avoid adding rows that would be removed later.
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(2) Let 𝑎1, 𝑎2 ∈ ValuesRow(𝑏, 𝑐). Let 𝐴𝑖 := {𝑎𝑖1, 𝑎
𝑖
2}, then for each 𝑖 , 𝐴𝑖 ⊆ Values(𝑏𝑖 , 𝑐𝑖 ), by definition of

ValuesRow. By assumption, all elements in 𝐴1 × · · · ×𝐴𝑛 are covered by 𝑄 . Define 𝑎𝑖3 = 𝑎𝑖1, if 𝑎
𝑖
1 = 𝑎𝑖2,

and 𝑎𝑖3 = ⊡, otherwise. Since 𝑄 is saturated, 𝑎3 is covered by some row 𝑘 of 𝑄 . But then 𝑎1 and 𝑎2 are
covered by the same row 𝑘 in 𝑄 .

(3) By Lemma 4.12, we can compute 𝑄 = Saturate(Abstract(𝑃)).
⇒: Let 𝑃 be exhaustive. There are two cases. If (𝜑,𝜓 ) contains a (F, F) entry for all valuations, then
¬Inhabited(𝜑,𝜓 ) holds, and the Matrix Formula is true.
Otherwise, there is a valuation 𝑉 such that valuesRow(𝑉 (𝜑),𝑉 (𝜓 )) ≠ ∅. Since 𝑃 is exhaustive, all 𝑎 in
its nullity vector are covered by 𝑃 . By (1), 𝑄 still covers the same 𝑎. By (2), they are even covered by a
single row 𝑄𝑘 . Hence matchesRow(𝑄𝑘 ,𝑉 (𝜑),𝑉 (𝜓 )) holds, and the Matrix Formula is true.
⇐: Assume 𝑉 (MatrixFormula(𝑃, 𝜑,𝜓 )) = T for arbitrary 𝑉 . We must show that 𝑃 is exhaustive
for (𝑉 (𝜑),𝑉 (𝜓 )). Let 𝑎 ∈ valuesRow(𝑉 (𝜑),𝑉 (𝜓 )) be given, then Inhabited(𝑉 (𝜑),𝑉 (𝜓 )) is true, so
matchesMatrix(𝑄,𝑉 (𝜑),𝑉 (𝜓 )) holds. So for some row 𝑘 , the disjunct matchesRow(𝑄𝑘 ,𝑉 (𝜑),𝑉 (𝜓 ))

holds. This means that 𝑄𝑘 covers 𝑎, hence 𝑄 covers 𝑎, hence 𝑃 covers 𝑎 by (1). Hence 𝑃 is exhaustive.

□

Example 4.14. In Example 4.4, we obtained the pattern matrix 𝑃 = ((⊡, 1), (1, 0)). We saturate it
by adding the generalized row (1,⊡). Now we remove the redundant row (1, 0). So the minimal
saturated pattern matrix is ((⊡, 1), (1,⊡)). Recall that the nullity of the matched terms was (F, 𝛽)
and (T, T). So the Matrix Formula in this case is: (¬T ∨ ¬F) ≡B T. Indeed, the matrix is exhaustive,
since the given expressions are covered by the second row of the minimal saturated matrix.

Lemma 4.13(3) is the key to relate the declarative system with Algorithm W. We formulate the
correctness of Algorithm W with null and pattern matching as follows:

Theorem 4.15 (Soundness of W). If Γ ⊢𝑤 𝑒 : 𝜏 ; 𝑆 then Γ𝑆 ⊢𝑑 𝑒 : 𝜏 .

Theorem 4.16 (Completeness of W). If Γ𝑆 ⊢𝑑 𝑒 : 𝜏 then for some 𝜏 ′ and 𝑆 ′, Γ ⊢𝑤 𝑒 : 𝜏 ′; 𝑆 ′ and
there exists 𝑆0, 𝜏0 such that Γ𝑆 ′𝑆0 = Γ𝑆 and gen(Γ𝑆 ′, 𝜏 ′)𝑆0 ⊑ 𝜏0 ≡B 𝜏 .

Corollary 4.17 (Principal Types). The calculus 𝜆rel
null

enjoys the principal type property.

4.7 Extension: Polymorphic Relational Nullability with the Choose-★ Rule

We now discuss an extension of the type system that enables relational polymorphic nullability.
Consider the following two program fragments:

1 choose x {

2 case null => "Hello World"

3 case w => "Goodbye World"

4 }

1 choose x {

2 case null => null

3 case w => w + 42

4 }

The left program fragment can be given the non-nullable type String ? (F, T), because both branches
return a non-null string. On the other hand, the program fragment on the right cannot be given the
non-nullable type Int ? (F, T) Ð not even when 𝑥 would be a constant value. The reason is that the
(T-Choose) rule, like (T-Ite), requires that the types of all branches must be the same, which would
be Int ? (T, T) in this case. Thus, even if we know that 𝑥 cannot possibly be null, this information is
not preserved in the type of a choose expression. In our extension, the nullities of the branches will
be combined with ∨. Moreover, the type of each branch will depend on its pattern. Consequently,
the program fragment on the right gets type Int ? (𝛽,𝛾), whenever 𝑥 : Int ? (𝛽,𝛾). This is achieved
by the (Choose-★) rule, shown in Figure 9. A similar extension can be made to the (T-Ite) rule.

4.7.1 Typing. In order to infer a more precise, relational nullable type, we now extend the declara-
tive type system with (T-Choose-★) and Algorithm W with (W-Choose-★), see Figure 9. The old
rules (T-Choose) and (W-Choose) are now superfluous.
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Γ ⊢𝑑 𝑒
𝑗
𝑚 : 𝜋 𝑗 ? (𝜑 𝑗 ,𝜓 𝑗 ) (∀𝑗)

Γ𝑒𝑥𝑡,𝑖 := {𝑥 𝑗 : 𝜋 𝑗 ? (𝜒𝑖, 𝑗 , T) | 𝑃𝑖, 𝑗 = 𝑥 𝑗 }

Γ ∪ Γ𝑒𝑥𝑡,𝑖 ⊢𝑑 𝑒𝑖
𝑏
: 𝜋 ′ ? (𝜑 ′

𝑖 ,𝜓
′
𝑖 ) (∀𝑖)

𝑃 is exhaustive for (𝜑,𝜓 )
𝜑𝑟 =

∨
𝑖 (Line(𝑃𝑖 , 𝜑,𝜓 ) ∧ 𝜑 ′

𝑖 )

𝜓𝑟 =
∨

𝑖 (Line(𝑃𝑖 , 𝜑,𝜓 ) ∧𝜓 ′
𝑖 )

Γ ⊢𝑑 choose 𝑒𝑚 {𝑃 ⇒ 𝑒𝑏 } : 𝜋
′ ? (𝜑𝑟 ,𝜓𝑟 )

(T-Choose-★)

Γ ⊢∗𝑤 𝑒𝑚 : 𝜋 ? (𝜑,𝜓 ); 𝑆0
𝛽𝑖, 𝑗 fresh variables

Γ𝑒𝑥𝑡,𝑖 := {𝑥 𝑗 : 𝜋 𝑗 ? (𝛽𝑖, 𝑗 , T) | 𝑃𝑖, 𝑗 = 𝑥 𝑗 }

(Γ ∪ Γ𝑒𝑥𝑡 )𝑆0 ⊢
∗
𝑤 𝑒𝑏 : 𝜋 ′ ? (𝜑 ′,𝜓 ′); 𝑆1

𝑆2 = {𝜋 ′
𝑖

?
= 𝜋 ′

𝑖+1 | 0 ≤ 𝑖 < |𝑒𝑏 |}

𝑆3 = (MatrixFormula(𝑃, 𝜑,𝜓 )𝑆1𝑆2
?
= T)

𝜑𝑟 =
∨

𝑖 (Line(𝑃𝑖 , 𝜑,𝜓 )𝑆1 ∧ 𝜑 ′
𝑖 )

𝜓𝑟 =
∨

𝑖 (Line(𝑃𝑖 , 𝜑,𝜓 )𝑆1 ∧𝜓 ′
𝑖 )

Γ ⊢𝑤 choose 𝑒𝑚 {𝑃 ⇒ 𝑒𝑏 } :
(𝜋 ′

0 ? (𝜑𝑟 ,𝜓𝑟 ))𝑆2𝑆3; 𝑆0𝑆1𝑆2𝑆3
(W-Choose-★)

Fig. 9. Extension of Declarative Type System and Algorithm W with Choose-★

In both cases, we still require that the proper types 𝜋 ′ of all the bodies are equal. However,
we now allow different nullity formulas for the various branches. The nullity formulas of the
whole choose-construct will be the disjunction of the formulas of the branches. In order to specify
relational nullable types, we strengthen the result types of the branch 𝑖 with the information that the
corresponding pattern row has matched. This information is encoded as the formula Line(𝑃𝑖 , 𝜑,𝜓 ).
A row matches, if each single entry 𝑗 matches an expression with nullity formula (𝜑 𝑗 ,𝜓 𝑗 ), which is
encoded in the formula mayCover(𝑃𝑖, 𝑗 , 𝜑 𝑗 ,𝜓 𝑗 ). Pattern null can only apply if the expression may
be null, i.e., 𝜑 holds. Pattern 𝑥 can only apply if the expression may be non-null, i.e.𝜓 holds. Finally,
pattern ⊡ can only apply if the expression is either null or non-null, i.e. 𝜑 ∨𝜓 holds.

mayCover(null, 𝜑,𝜓 ) = 𝜑 mayCover(𝑥, 𝜑,𝜓 ) = 𝜓 mayCover(⊡, 𝜑,𝜓 ) = 𝜑 ∨𝜓

Row 𝑖 may apply, if all its entries may cover the corresponding match value:

Line(𝑃𝑖 , 𝜑,𝜓 ) =
∧
𝑗

(mayCover(𝑃𝑖, 𝑗 , 𝜑 𝑗 ,𝜓 𝑗 ))

4.7.2 Soundness. We would like to state soundness, i.e. the progress and preservation theorems,
for the declarative type system extended with the (T-Choose-★) rule. Progress is straightforward,
but it turns out that preservation does not hold. To understand why, consider the following program
fragment which is typeable with (T-Choose-★) but not with (T-Choose):

1 let k = x -> y -> x;

2 let u = choose* (if (false) null else 123) {

3 case null => null

4 case x => 456 : Int ? (false , true) // type ascription

5 }

6 k(u)

Here the proper type of 𝑘 (𝑢) is 𝛼 → Int32 ? (T, T) for some 𝛼 . This type arises because the type
of the if-then-else expression admits both null and non-null values and, consequently, the type
system cannot exclude either branch of the choose expression and thus 𝑢 may be null or non-null.
Let us now perform two reduction steps: First, the if-then-else expression is reduced to the

value 123. Next, the choose expression is reduced to the value 456 (which is given the explicit
type Int ? (F, T)) with a type ascription5. After these two reduction steps, the proper type of 𝑘 (𝑢)
is 𝛼 → Int32 ? (F, T). But the two proper types: 𝛼 → Int32 ? (T, T) and 𝛼 → Int32 ? (F, T) are

5The use of a type ascription is immaterial, the exact same typing can be obtained with an even more elaborate program.
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not equal Ð not even modulo Boolean equivalence. Consequently, in the declarative type system
extended with the (T-Choose-★) rule, preservation does not hold in its original formulation.

However, all is not lost. We conjecture that preservation still holds if the type system is extended
with a notion of łBoolean sub-typingž. Informally, 𝜏 <: 𝜏 ′ if 𝜏 is structurally equivalent to 𝜏 ′ and
whenever there are two Boolean formulas 𝜑 and 𝜑 ′ then 𝜑 ⇒ 𝜑 ′ (or 𝜑 ′ ⇒ 𝜑 in contravariant
positions). With this notion, we believe:

Conjecture 4.18 (Preservation-★). If Γ ⊢𝑑 𝑒 : 𝜏 and 𝑒 → 𝑒 ′ then Γ ⊢𝑑 𝑒 ′ : 𝜏 ′ for some 𝜏 ′ <: 𝜏 .

However, Boolean sub-typing, with the corresponding extension of principal type inference,
deserves its own separate treatment, which is left as future work.

5 IMPLEMENTATION

We have implemented the 𝜆rel
null

calculus in two systems: As a minimal proof-of-concept calculus
and as an extension of the Flix programming language.

5.1 The Flix Programming Language

Flix is a functional, imperative, and logic programming language that supports algebraic data
types, pattern matching, parametric polymorphism, type classes, currying, higher-order functions,
polymorphic effects, extensible records, first-class Datalog constraints, channel and process-based
concurrency, and tail call elimination [Madsen and Lhoták 2018, 2020; Madsen and van de Pol
2020; Madsen et al. 2016]. The Flix compiler project, including the standard library and tests, is
approximately 135,000 lines of Flix and Scala code.

5.2 Minimal Proof-of-Concept Implementation

We have implemented a minimal proof-of-concept version of the 𝜆rel
null

calculus as a Flix program.
The proof-of-concept includes a complete implementation of the type inference system based on
Algorithm W. The implementation closely follows the formal type inference rules (Section 4.6).

5.3 Flix Extension with Relational Nullable Types

Flix, like Haskell, OCaml, and Rust does not have a null value, but instead has the Option data type.
However, as discussed in Section 2, relational nullable types are also relevant for programming
languages with Option types. For Flix, we introduce a new data type called Choice[t, a, p] which is
parameterized by a type t, and two booleans a and p. The Choice data type has two constructors:

Absent : Choice[t, true, p] Present : Choice[t, a, true]

Note how the type of Absent and Present closely mirrors that of null and non-null values.
To work with Choice values, we introduce two pattern matching constructs: choose and choose*

corresponding to the type rules (T-Choose) and (T-Choose-★). A choose expression destructs
a sequence of choice values into a value of any type, whereas a choose* expression destructs a
sequence of choice values into a value that must be of the Choice type. Other than these two
changes, everything else follows the formal system.
In terms of implementation effort, the extension required less than 3,000 lines of code, mostly

related to computing saturated pattern match matrices and type inference for the choose and
choose* expressions. We also extended the standard library with several combinator functions.

Flix, with our extension, is open source, ready for use, and freely available at:

https://flix.dev/ and https://github.com/flix/flix/
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5.3.1 Higher-Order Combinators. The extended Flix type system naturally supports combinator
functions such as filter, map, flatMap, and flatten.6

For example, the definition of map is straightforward:

1 def map(f: s -> t, c: Choice[s, a, p]): Choice[t, a, p] = choose* c {

2 case Absent => Absent

3 case Present(x) => Present(f(x))

4 }

The definition of flatMap is also straightforward, but gives rise to a more interesting type:

1 def flatMap(f: s -> Choice[t, a2, p2], c: Choice[s, a1, p1]):

2 Choice[t, a1 or (p1 and a2), p1 and p2] = choose* c {

3 case Absent => Absent

4 case Present(v) => f(v)

5 }

Let us break it down. Let us consider when the result can be Absent. This can happen for two
reasons: If the argument 𝑐 is already Absent (i.e. 𝑎1 holds) or if 𝑓 returns Absent (i.e. 𝑎2 holds) and
the argument 𝑐 was Present (i.e. 𝑝1 holds). This gives us the constraint 𝑎1 ∨ (𝑝1 ∧ 𝑎2). Now, let us
consider when the result can be Present. This can only happen if the argument 𝑐 is already Present

(i.e. 𝑝1 holds) and 𝑓 returns a Present value (i.e. 𝑝2 holds). This gives us the constraint 𝑝1 ∧ 𝑝2.
The definition of filter is also straightforward:

1 def filter(f: t -> Bool , c: Choice[t, a, p]): Choice[t, a or p, p] = choose* c {

2 case Absent => Absent

3 case Present(v) => if (f(v)) Present(v) else Absent

4 }

Let us break it down again. First, observe that we have no information about whether 𝑓 returns
true or false, consequently in the Present case the value can be Absent or Present. Let us now
consider when the result can be Absent. This can happen for two reasons: If the argument 𝑐 is
already Absent (i.e. 𝑎 holds) or if 𝑐 is Present (i.e. 𝑝 holds). This gives us the constraint 𝑎 ∨ 𝑝 . Let us
consider when the result can be Present. This can only happen if 𝑐 is Present (i.e. if 𝑝 holds).

We can define a withDefault function that, given two arguments, returns the first argument if it
is Present and otherwise returns the second argument:

1 def withDefault(c1: Choice[s, a1, p1], c2: Choice[s, a2, p2]):

2 Choice[s, a1 and a2, p1 or (a1 and p2)] = choose* c1 {

3 case Absent => c2

4 case Present(v) => Present(v)

5 }

Let us break it down again. Let us consider when the result can be Absent. This can only happen
if 𝑐1 is Absent (i.e. 𝑎1 holds) and if 𝑐2 is also Absent (i.e. 𝑎2 holds). Thus the result can be Absent
when 𝑎1 ∧ 𝑎2 holds. Let us now consider when the result can be Present. This can happen if 𝑐1 is
Present (i.e. 𝑝1 holds) or if 𝑐1 is Absent and 𝑐2 is Present (i.e. 𝑎1 holds and 𝑝2 holds). Thus the result
can be Present when 𝑝1 ∨ (𝑎1 ∧ 𝑝2) holds.
We close with an interesting, if perhaps useless, combinator:

1 def invert(c: Choice[s, a, p], v: s): Choice[s, p, a] = choose* c {

2 case Absent => Present(v)

3 case Present(_) => Absent

4 }

For example, invert(invert(invert(Absent, 1), 2), 3) == 3. To the best of our knowledge,
no existing nullable type system can express such a combinator.

6For the sake of exposition, we have slightly simplified some of the type schemes. The type schemes are still correct, but
they are less general than the most general type scheme permitted by the relational nullable type system.
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5.3.2 Type Errors. An important practical concern is how to report type errors to the programmer.
In particular, Hindley-Milner style type inference is known to produce type errors that are difficult
for programmers to understand [Chitil 2001]. The use of Boolean formulas and unification only
exacerbates this problem.
In the current Flix implementation, we report a type error when two Boolean formulas 𝜑 and

𝜓 fail to unify. We have found that such type errors are difficult to untangle. In future work, we
would like to explore a better approach: in case of a unification failure, we want to construct a
sequence of nullable or non-nullable values that are not matched by any row in the pattern match.
We think that such type errors could be more helpful than ordinary unification errors.

5.4 Evaluation: Recasting the Program Fragments in Flix

We have used the Flix implementation to experiment with reformulations of the program fragments
from the preliminary study (Section 2). We believe that all program fragments can be suitably
reformulated in Flix using the relational nullable type system. To illustrate, we show three examples
from the study recast in Flix:

pmd/pmd (Recast in Flix)

1 let mkDbType = (subProtocol , subnamePrefix) ->

2 choose (subProtocol , subnamePrefix) {

3 case (Absent , Present(prefix )) => /* omitted */

4 case (Present(proto), Absent) => /* omitted */

5 case (Present(proto), Present(prefix )) => /* omitted */

6 }

which captures that subProtocol and subnamePrefix cannot both be Absent.

openssl/openssl (Recast in Flix)

1 let ossl_ffc_params_FIPS186_4_gen_verify = params ->

2 choose (params.p, params.q) {

3 case (Absent , Absent) => /* omitted */

4 case (Present(p1), Present(p2)) => /* omitted */

5 }

which captures that the p and q fields of the record params must both be Absent or Present.

snowplow/iglu (Recast in Flix)

1 let credentialsProvider = (accessKeyId , secretAccessKey , profile) ->

2 choose (accessKeyId , secretAccessKey , profile) {

3 case (Present(k), Present(s), Absent) => BasicAWSCredentials(k, s)

4 case (Absent , Absent , Present(p)) => ProfileCredentialsProvider(p)

5 case (Absent , Absent , Absent) => DefaultAWSCredentialsProvider ()

6 }

which captures that either both accessKeyId and secretAccessKeymust be provided, or profilemust
be provided, or none of the arguments must be provided.

All three examples illustrate the need for relational nullability and the need for may and must
information, i.e., whether an expression may or must evaluate to null and whether it may or must
evaluate to a non-null value.
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6 RELATED WORK

6.1 Boolean Unification

Early work on Boolean unification and the successive variable elimination algorithm goes back
to George Boole himself [Boole 1847]. Later work include that of Rudeanu [1974] and Buttner
and Simonis [1987]. An accessible introduction to Boolean unification is provided by Martin and
Nipkow [1989]. Boudet et al. [1989] study unification in Boolean rings and in combination with
other theories. A study of the computational complexity of Boolean unification is provided by
Baader [1998]. An alternative algorithm for Boolean unification is proposed by Löwenheim [1908].

6.2 Type Systems and Type Inference

The DamasśHindleyśMilner type system was first described by Hindley [1969] and Milner [1978].
Later, Damas [1984] studied the formal foundations of the system. The DamasśHindleyśMilner type
system has been used as the theoretical foundation for several real-world functional programming
languages, including Haskell, OCaml, and Standard ML. Many extensions have been proposed,
notably type classes [Wadler and Blott 1989], qualified-types [Jones 2003], and region-basedmemory
management [Tofte and Talpin 1997].
In the early years, an important question was how to prove correctness of DamasśHindleyś

Milner-style type systems and similar systems. In an influential work, Wright and Felleisen [1994]
describes a łsyntactic approachž laying the foundations for the modern formulations of soundness
in terms of the progress and preservation theorems.

6.3 Type Inference with Boolean Unification

In [Madsen and van de Pol 2020], we propose a polymorphic type and effect system based on
Hindley-Milner and Boolean unification. In that system, every expression is associated with a
Boolean formula that captures when the expression is pure (i.e. has no side-effect). The type and
effect system supports effect polymorphism: The purity of a higher-order function may depend
on the purity of its function arguments. The authors implement the type and effect system in the
Flix programming language. Experimental results on the Flix standard library and a number of
Flix applications suggest that the performance cost of Boolean unification during type and effect
inference is acceptable.

While our work in [Madsen and van de Pol 2020] and this paper are both based on the Hindley-
Milner type system extended with Boolean constraints, there are significant differences: First, the
subject areas are very different: effect polymorphism vs. relational nullability. In [Madsen and
van de Pol 2020], the goal is to capture when an expression is pure, whereas here our goal is to
capture the nullability of an expression in relation to other related expressions and to express the
exhaustiveness condition of the choose construct in the type system. Second, in [Madsen and van de
Pol 2020], the Boolean formulas have no impact on the progress theorem (ill-effected expressions
cannot get stuck). Third, our current type system relies on both may and must information.

6.4 Nullable Type Systems

There is a rich research literature on nullable type systems. We aim to provide a broad outline.
Most of the work below is orthogonal to the idea of relational nullability.

6.4.1 Studies. Chalin and James [2007] conduct at study of five large open source projects. The
study shows that on average 3/4 of all references could be annotated as non-null. Consequently,
the authors proposed that non-nullable types should be the default. In relation to our work, null or
non-null annotations are never required since our type system supports type inference; nullness is
simply inferred from the source code.
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6.4.2 Retrofitted Nullable Type Systems. Fähndrich and Leino [2003] propose a sound way to
retrofit C# and Java with nullable type systems. Nieto et al. [2020b] present an extension of the
Scala type system that makes nullable types explicit. The type system has been implemented in
the Dotty compiler for the Scala 3.0 language. Our łretrofitž of Flix was straightforward since we
simply introduced a new data type called Choice. An interesting question for future work would
be to explore how to retrofit relational nullable type system onto other programming languages.

6.4.3 Gradual Nullable Type Systems. Brotherston et al. [2017] present Granullar, a gradual plug-
gable type system for Java. The type system ensures that NullPointerExceptions cannot occur
within checked code; only on the boundary between checked and unchecked code. Nieto et al.
[2020a] present a blame calculus for a gradually typed language with null.

6.4.4 Object Initialization. Fähndrich and Xia [2007] present a type system with delayed types that
allows reasoning about when an object becomes fully initialized. Qi and Myers [2009] present a type
system based on type state that prevents reading from uninitialized fields. The calculus side-steps
the issue of null by relying on a flow-sensitive type system to track the set of uninitialized fields.
Summers and Müller [2011] presents a type system to track object initialization. The type system
ensures that objects under construction, whose invariants may not yet be fully satisfied, cannot
escape except under controlled circumstances. While beyond the scope of this paper, relational
nullability seems related to the problem of object initialization in the sense that whether one field
is initialized may depend on whether another field is initialized. It would be interesting to explore
this connection in future work.

6.4.5 Static Analysis. Spoto [2008] presents a static analysis to detect NullPointerExceptions
in Java bytecode. The static analysis uses abstract domains implemented efficiently using binary
decision diagrams (BDDs). While their work and our work both use Boolean formulas, the two
approaches are very different. For future work, it would be interesting to explore whether the
idea of relational nullability can be formulated as a (relational) abstract domain. Male et al. [2008]
present an extension of the JVM bytecode verifier with support for nullable types. Hubert et al.
[2008] present a constraint-based static analysis to infer non-null annotations. Banerjee et al. [2019]
presents NullAway, a tool to find NullPointerExceptions . NullAway, unlike other similar tools,
does not aim for soundness, but rather for a reduction of spurious warnings reported by the tool.
This reduces the annotation burden for the programmer. Our type system supports type inference,
so annotations are never required.

6.4.6 Unsoundness. Amin and Tate [2016] demonstrate unsoundness of Java’s and Scala’s type
systems. The unsoundness manifests itself as a combination of wildcards, sub-typing, and nulls.
Intriguingly, each individual feature is believed to be sound, but it is their combination that breaks
soundness of the overall type systems.

6.5 More Powerful Type Systems

6.5.1 Logical Types. Tobin-Hochstadt and Felleisen [2010] present a type system with logic pred-
icates for a typed Scheme. The key idea is to use control flow predicates as propositional logic
formulas as part of the type of an expression. For example, in the Scheme expression (if (number?

x) e1 e2), the 𝑒1 expression is typed with the knowledge that 𝑥 satisfies the number? predicate,
whereas 𝑒2 is typed with the knowledge that 𝑥 does not satisfy the predicate. Concretely, in their
system, the typing judgement is of the form Γ ⊢ 𝜑+ | 𝜑− ; o which states that if 𝑒 evaluates to a
łtruthyž value then the 𝜑+ formula holds (and otherwise the 𝜑− formula holds).

The work of Tobin-Hochstadt and Felleisen is closely related to ours, but with several differences.
First, we introduce the notion of relational nullability and we compute a precise exhaustiveness
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condition. Second, our type system supports parametric polymorphism whereas their type system
supports sub-typing (neither type system supports both). Third, our type system supports full type
inference (i.e. if a program is typeable w.r.t. the declarative system then Algorithm W will provide
the typing), whereas their type system supports a limited form of local type inference [Pierce and
Turner 2000].

6.5.2 Refinement Types. Our relational nullable type system can be seen as a special case of a
refinement type system [Rondon et al. 2008; Vazou et al. 2014], which has typing judgements of the
form Γ ⊢ 𝑒 : {𝜈 : 𝜏 | 𝜑}. Here 𝜏 is the type of the expression 𝑒 subject to the logic formula 𝜑 , which
may refer to the value of 𝑒 as 𝜈 . For example, the refinement type {𝜈 : Int | 1 ≤ 𝜈 ≤ 99} captures all
integers between 1 and 99 (inclusively). With this in mind, we can view the relational nullable type
𝜋 ? (𝜑,𝜓 ) as the refinement type {𝜈 : 𝜋 | 𝑣 = null ⇒ 𝜑 ∧ 𝑣 ≠ null ⇒ 𝜓 }.

Refinement type systems are often very powerful depending on the types of formulas that are
admitted. If such formulas contain undecidable fragments of logic then type checking may even
be undecidable [Rondon et al. 2008; Vazou et al. 2014]. In practice, refinement type systems often
rely on SMT solvers to implement type checking. In comparison, our proposed type system is in a
sweet-spot: type checking and even type inference is decidable due to existence of most general
unifiers for Boolean formulas.

In summary, the main novelty of our work is the support for relational nullable types that are
expressed as Boolean constraints which can be fully inferred with a novel extension of Algorithm W.

7 CONCLUSION

We have presented a simple, practical, and expressive relational nullable type system. The type
system extends the Hindley-Milner type system with Boolean constraints, supports parametric
polymorphism, and has principal types modulo Boolean equivalence. An important property of
the type system is that it supports full type inference. The key insight is that the exhaustiveness
condition of a relational pattern match can be translated into a Boolean formula which can be
inferred because Boolean formulas have most general unifiers. Thus we can infer types with an
extension of Algorithm W.
We have conducted a preliminary study on the use of relational nullability in open source

projects. Three observations from the study were: (i) programmers use programming patterns
where the nullability of one expression depends on the nullability of other related expressions,
(ii) reasoning about such patterns requires both may and must information, and (iii) in lieu of type
system support, programmers rely on run-time checks to enforce relational nullability invariants.
The presented relational nullable type system regains type safety for such programming patterns
while supporting full type inference.
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