An Introduction to the
Flix Programming Language

Dahl-Nygaard Prize Talk

MAGNUS MADSEN

Thanks to our sponsors: :I REC
Digital Research Centre Denmark

The Flix Team €555 amazon | science

Jaco

Jonathan Matt

Outline

An introduction to the Flix programming language:
@ First-class Datalog

@ Effect system

@ Local mutation

@ Purity reflection

@ Design principles

@ Ecosystem and tooling

The Flix Principle

In Flix the primary building block is a function. A function maps an input to an output.

Flix allows functions to be written in the most natural and/or efficient style ...

* Functionally
* Imperatively
* Declaratively

... without revealing these implementation to the clients.

@ First-class
Datalog

Introduction to Datalog

Datalog is a simple, yet surprisingly powerful declarative logic programming language.
A bit like SQL but with recursion.

Datalog has several important properties:
Every Datalog program eventually terminates.

Every Datalog program has a unique solution.
Datalog has efficient and parallel evaluation strategies.

Datalog has successfully been used in a wide-variety of applications:
e.g., program analysis, security analysis, data analytics, bio-informatics.

Datalog has often been used for very specialized applications that have high complexity and/or
performance requirements.

Introduction to Datalog (cont’d)

A simple query over two relations:

Bird("Eagle").
Bird("Gentoo").
Flying("Eagle").

Penguin(x) :- Bird(x), Flying(x).

A recursive query over two relations:

Direct("BLL", "FRA").
Direct("FRA", "YYZ").
Direct("YYZ", "YVR").

Connected(src, dst) :- Direct(src, dst).
Connected(src, dst) :-

Connected(src, hop), Direct(hop, dst).

Motivation

Using Datalog is cumbersome!

 |don’t want to write my entire program in Datalog.

 |don’t want to generate a text file, pass it to a Datalog solver, and parse the result.

 |don’t want to use FFl for a 10-line program.

* | want all the conveniences of a real programming language (a type system, an IDE, tools, etc.)
* | want to write modular and reusable programs.

Datalog programs as first-class values in a functional programming language.

Example: Datalog in Flix

connected(routes: List[(String, String)]): List[(String, String)] =

db = routes Direct

pr = #{

Connected(src, dst) :- Direct(src, dst).

Connected(src, dst) :- Connected(src, hop), Direct(hop, dst).

db, pr (x, v) Connected(x, v) Array.tolList

Example: Polymorphic Datalog

reachable(edges: List[(Z#, t)], src: t, dst: t): Bool =
db = edges Edge
pr = #{
Path(x, v) :- Edge(x, vy).
Path(x, z) :- Path(x, v), Edge(y, z).
Reachable() :- Path(src, dst).

result = db, pr () Reachable()
Array.isEmpty(result)

10

Example: Lattice Semantics

shortestDist(origin: t, edges: List[(t, Int32, t)]): Map[t, N] =
db = edges Edge
pr = #{
Dist(origin; M0)).
Dist(y; add(d1, d2)) :- Dist(x; di1), Edge(x, d2, vy).

}
db, pr (x, d) Dist(x; d) Array.toMap
0T
N { MInt32) } 1
PartialOrder[N] {
lessEqual(x: N, y: N): Bool =
} oo 1

// LowerBound, JoinLattice, MeetlLattice, ... Here N = (o0, 0, >, min, max)

11

(1) Summary: First-Class Datalog

First-class Datalog program values enable us to use Datalog where it shines: to declaratively
express and solve fixed-point constraints.
We can write functions that internally use Datalog program values.

We can write modular and reusable Datalog programs using polymorphism.
The type system ensures that our Datalog programs are consistent and stratified.

Flix supports constraints on relations, but also constraints on lattices.
We can solve even more fixed-point problems, including program analyses and two-player games.

12

@ Effect System

Type and Effect System

Flix has a type and effect system based on Hindley-Milner.
The system supports type classes, higher-kinded types, and complete type inference.

The effect system separates pure, impure, and effect polymorphic expressions.
The effect system is the basis for purity reflection.

Tracking purity has several benefits:
It enables programmers to know when equational reasoning holds.

It enables the Flix inliner to make more aggressive, but sound, choices.
It enables the Flix standard library to know when it is safe to parallelize code (more on this later).

14

Purity

We can express that a function is pure:

add(x: Int32, y: Int32): Int32 \ { } =
AN empty effect

Here the implementation of add cannot have any side-effects.

We can also express that a higher-order function requires a pure function argument:

count(f: a Bool \ { }, 1l: List[a&]l): Int32 \ { } =
AN empty effect set AN empty effect

Here neither ¥ nor count can have any side-effects.

15

Impurity

We can also express that a function is impure:

Itis a

sayHello(name: String): Unit \ { Impure } =

println("Hello ${name}!") ANAANAN printing is impure

to annotate an impure function as pure:

illegal() : unit \ { } =
println(“I am impure!")

— Type Error
>> Impure function declared as pure.
1 | def illegal() : unit \ { } =

impure function.

16

Effect Polymorphism

We can express that the effect of a higher-order function depends on its argument:

map(f: a b\ ef, 1: List[al): List[b] \ ef =
AN effect variable AN effect variable

The effect of map is the same as the effect of f.

List.map(x X * X + 42, 1)

List.map(x println(x), 1)

17

First-class Functions

We support first-class functions. We can express function composition as:

>>(f: a b\ efi1, g: b c\ ef2): a c \ {ef1, ef2} =
ANANANNAN ynion effect

The effect of the returned function is pure if ¥ and g are pure.

18

(2) Summary: Effect System

The type and effect system enables us to write pure, impure, and effect polymorphic functions.

We can use the type and effect system to track and enforce purity:
The Flix standard library enforces that the eq, hash, compare, and toString functions are pure.

The Flix compiler uses purity information during variable and function inlining.

Related Work:
Polymorphic effect systems |]

Region-based memory management []
Programming with algebraic effects and handlers |]

19

@ LLocal
Mutation

Local Mutation

We have seen that Flix tracks purity.
As soon as a function touches mutable memory it gets tainted with impurity.

This is cumbersome because impurity then proliferates through the program.
But what if the use of mutation is in some sense “local”.

Can we do better?

@ We associate all mutable data with a region:
Reads and writes to data in a region are precisely tracked by the effect system.

All effects related to a region vanish when the region goes out-of-scope.

pA

Example: Sorting

///

/// Sort the given list "1 so that elements are ordered from low to
/// high according to their “Order” instance.
///
sort(l: List[a]): List[a] Order[a] =
r {
arr = List.toArray(l, r)
Array.sort!(arr)
Array.tolList(arr)

Introduce a new region.

Do imperative programming.
Return immutable data.

o 20 =

Using an array-based (in place) sort is much faster than any list-based sort.

Allocate (mutable) data in the region.

22

Example: Adding Two Numbers

sum(x: Int32, y: Int32): Int32 \ { } =
r {
a =[x, ylar
Array.swap!(0, 1, a)
al[1] + a[o]
}

Example: Swapping Elements

swap!(i: Int32, j: Int32, a: Array[t, r]): Unit \ { Read(r), Write(r) } =

alj]

<
i1

= The region is part of the array type.

The type and effect system tracks reads and writes to regions.

24

Example: ToString

///

/// Returns a String representation of the given list "1 .

///

/// The returned String is of the form x1 :: x2 :: .. :: Nil.
///
toString(l: List[a]): String ToString[al] =
r {
sb = StringBuilder(r)

List.foreach(x StringBuilder.appendString!("${x
StringBuilder.appendString!("Nil", sb)
StringBuilder.toString(sb)

}

Using StringBuilders in toString functions is intuitive and efficient.

", sb), 1)

25

(3) Summary: Local Mutation

Local mutation enables us to write pure functions that use local mutable state.
We can implement functions in imperative style.

We can use imperative style when it is more natural and/or more efficient.
The type and effect system continues to ensure separation of pure and impure code!

@ We can “pretend” to be functional programmers but use imperative style when we want!

We get the best of both worlds!

Related Work:
Linear types can change the world! |]

Imperative functional programming []
Lazy functional state threads |]

26

@ Purity
Reflection

Purity Reflection

Program evaluation in Flix (and most programming languages) is eager and sequential.
But it would be useful if library authors could take advantage of lazy and/or parallel evaluation.

But when is it safe to evaluate a function lazily or in parallel?

Many programming languages have streams:
But the combination of streams and side-effects is a dangerous cocktail.

We risk race conditons, deadlocks, lost and/or re-ordered side effects!

Can we do better?

@ What if we allow data structure operations (map, filter, etc.) to vary their behavior depending
on the purity of their function arguments?

28

Example: Selective Laziness

We can write a map function that uses selective laziness:

map(f: a -> b & ef, 1: DelaylList[al): DelayList[b] & ef =
reifyEff(f) {

Pure(g) mapL(g, 1)
mapE(f, 1)

If £ is pure then we use maplL to apply it lazily over the list.
If £ is impure then we use mapE to apply it eager over the list (materializing all effects).

29

Example I

The Flix program fragment:

DelayList.range(1, 1 000 _000_000)
DelayList.map(x {println("a" X + 1})
DelayList.map(x {printin("b"); x = 2})

Prints one billion a’s followed by one billion b’s.

This takes a while, but ultimately the program terminates.

The a’s are printed before the b’s preserving the order of effects.

30

Example II

The Flix program fragment:

DelayList.range(1, 1 000 _000_000)
DelayList.map(x X + 1)
DelayList.map(x X * 2)
DelaylList.head println

Prints Some (4) and terminates immediately.

The two map operations are pure, consequently they are applied lazily.

31

Example III

The Flix program fragment:

count = 0
List.range(1, 1 000 000 _000)
List.map(x X + 1)
List.take(1 000)
List.map(x { count := count + 1; x * 2})
println(count)

Prints 1000 and terminates very quickly.
The first map operation is applied lazily and the subsequent take operation is applied lazily.

The final map operation is applied eagerly, but only to the first 1000 elements.

32

Example: Selective Parallelism

We can also write a map function that uses selective parallelism:

mapWithKey(f: (k, v1) v2 & ef, t: RBTreelk, vi]): ...

reifyEff(f) {
Pure(g) parMapwWithKey(g, t)
segMapwWithKey(f, t)

}

We use this function in the implementation of the and data structures.

33

A Fresh Take on Data Transformations

Principle: Data structure operations (such as map, filter, ...)

e Use and/or when given function arguments.
e Use evaluation when given function arguments.

This ensures that side-effects are not lost and that the order of side-effects is preserved.

34

(4) Summary: Purity Reflection

Purity reflection enables higher-order functions to inspect the purity of their function
argument(s) and to vary their behavior based on this information.

We can use this information to implement new and novel data structures:
DelaylList alist that is maximally lazy except when given impure functions.

DelayMap a map that is lazy in its values and uses parallel evaluation for bulk operations.

Related Work:
First-class effect reflection for effect-guided programming |]

35

@ Design
Principles

The Flix Design Principles

A set of design choices or design principles collected over time.

Based on:
Discussions on GitHub.

Discussions on other programming language forums.
Perceived mistakes of other programming languages.
Feedback from users.

Listed on the Flix website for reference and to keep us honest.
We have now collected more than 59 such principles.

37

Principle: No warnings, only errors.

Principle: No unused declarations.

Principle: Declaration monotonicity.

A { main(): Int32 =
inc(x: Int32): Int32 = x + 1 A.
} B._
inc(1)
B {

Flix | Principles

C @

x|+

O E] https://flix.dev/principles/

Home About GetStarted Principles

Design Principles

Documentation Innovations Research FAQ

B w

Blog Contribute

We believe that the development of a programming language should follow a set of principles. That is, when a design decision is made there
should exist some rationale for why that decision was made. By outlining these principles, as we develop Flix, we hope to keep ourselves honest
and to communicate the kind of language Flix aspires to be.

Many of these ideas and principles come fram languages that have inspired Flix, including Ada, Elm, F#, Go, Haskell, OCaml, Rust, and Scala.

Language Principles

Simple is not easy

We believe in Rich Hickey's creed: simple
is not easy. We prefer a language that
gets things right to one that makes
things easy. Such a language might take
longer to learn in the short run, but its
simplicity pays off in the long run.

Everything is an expression

Flix is a functional language and
embraces the idea that everything
should be an expression. Flix has no
local variable declarations or if-then-else
statements, instead it has let-bindings
and if-then-else expressions. However,
Flix does not take this idea as far as the
Scheme languages. Flix still has

s s) sl s aTal sl s ol aTa ~ Tt

Human-readable errors

In the spirit of Elm and Rust, Flix aims to
have human readable and
understandable compiler messages.
Messages should describe the problem
in detail and provide information about
the context, including suggestions for
how to carrect the problem.

Private by default

Flix embraces the principle of least
privilege. In Flix, declarations are hidden
by default (i.e. private) and cannot be
accessed from outside of their
namespace (or sub-namespaces). We
believe it is important that programmers
are forced to make a conscious choice

aTa NiaTalaleal s y ~ ISl s

No null value

Flix does not have the null value. The
null value is now widely considered a
mistake and languages such as C#, Dart,
Kotlin and Scala are scrambling to adopt
mechanisms to ensure non-nullness. In
Flix, we adopt the standard solution
from functional languages which is to
represent the absence of a value using
the option type. This solution is simple
to understand, works well, and
guarantees the absence of dreaded

NullPointerExceptions.

No implicit coercions

In Flix, a value of one type is never
implicitly coerced or converted into a

O Nnoathnr oo Pl s st alla

@ Ecosystem &
Tooling

Visual Studio Code Support

We support most Visual Studio Code features, including:

syntax highlighting
inline diagnostics
auto-complete

type and effect hover
find references

jump to definition

rename

code hints

code lenses (e.g. “click to run”)
document symbols

workspace symbols

highlight related symbols

incremental compilation

43

) Fle Edit Selection

@ EXPLORER

~ FLIX

}j > lib

 SIC

= Main.flix
> target

> test

¥ HISTORY.md
fl LICENSE.md
() README.md

B % %

{:‘3} > OUTLINE
> TIMELINE

@o0ho

View Go Run Terminal Help Main.flix - flix - Visual Studio Code
= Mainflix X

sic » = Mainflix > ..
/// An example using Datalog constraints enriched with lattice semantics to
/// compute the delivery date of a part based on delivery dates of its components.
Run | Run with args... | Run (in new terminal) | Run with args... (in new terminal)
def main(): Unit & Impure =

let p = #H
/// Parts and the components they depend on.
PartDepends("Car", "Chassis").
PartDepends("Car", "Engine").
PartDepends("Engine", "Piston").

PartDepends("Engine", "Ignition").

/// The time required to assemble a part from its components.
AssemblyTime("Car™, 7).
AssemblyTime("Engine”, 2).

/// The expected delivery date for certain components.
DeliveryDate("Chassis"; 2).
DeliveryDate("Piston"; 1).
DeliveryDate("Ignition"; 7).

/// A part is ready when it is delivered.
ReadyDate(part; date) :-
DeliveryDate(part; date).

/// Or when it can be assembled from its components.
ReadyDate(part; assemblyTime + componentDate) :-
PartDepends(part, component),
AssemblyTime(part, assemblyTime),
ReadyDate(component; componentDate).

};

// Computes a map from parts to delivery dates.
let m = query p select (c, d) from ReadyDate(c; d) [> Array.toMap;

// Looks up the delivery date for the car and prints it.
Map.getWithDefault("Car", @, m) [> println
36 |

PROBLEMS ~ OUTPUT DEBUG CONSOLE TERMIMAL
LSP listening on: 'localhost/127.@.0.1:8888'.

Flix ©.28.@ Ready! (Extension: ©.74.0) (Using c:\Users\iostream\AppData\Roaming\Code\User\globalStorage\flix.flix\flix.jar)

Flix Compiler v =679 ~ X

@ Flix 0.28.0 Ready! (Extension: 0.74.0) (Using c\Users\iostream\AppData...

Ln 36, Col 1

44
Spaces:4 UTF-8 CRLF Flix & (2

The Flix Programming Language

C @

b

+

O [9) https:/flix.dev

Home About GetStarted Principles Documentation

The Flix Programming Language

Next-generation reliable, safe, concise, and
functional-first programming language.

Flix is a principled functional, imperative, and logic programming

language developed at Aarhus University, at the University of
Waterloo, and by a community of open source contributors.

Flix is inspired by OCaml and Haskell with ideas from Rust and Scala.
Flix looks like Scala, but its type system is based on Hindley-Milner.
Two unigue features of Flix are its polymorphic effect system and its
support for first-class Datalog constraints.

Flix compiles to JVM bytecode, runs on the Java Virtual Machine, and
supports full tail call elimination. A VSCode plugin for Flix is available.

Why Flix?

Innovations

Research FAQ Blog Contribute

m ‘ Algebraic Data Types and Pattern Matching v |

/77 An algebraic data type for shapes.

enum Shape {
case Circle{Int32), // circle radius
case Square{Int32), // side length
case Rectangle(Int32, Int32) // height and width

//ff Computes the area of the given shape using
/77 pattern matching and basic arithmetic.
def area(s: Shape): Int32 = match s {
case Circle(r) =
case Squarel(w) => W F W
case Rectangle(h, w) =»

H

J/ Computes the area of a 2 by 4.
def main{): Unit & Impure =
println{area(Rectangle(2, 4)))

Flix aims to offer a unique combination of features that no other programming language offers, including: algebraic data types and pattern
matching (like Haskell, OCaml), extensible records (like Elm), type classes (like Haskell, Rust), higher-kinded types (like Haskell), type
inference (like Haskell, OCaml), channel and process-based concurrency (like Go), a polymorphic effect system (a unique feature), purity
reflection (a unique feature), first-class Datalog constraints (a unique feature), and compilation to JVM bytecode (like Scala).

Algebraic Data Types and Pattern Matching

Algebraic data types and pattern matching are the bread-and-
butter of functional programming and are supported by Flix with
minimal fuss.

def origin(): (Int32, Int32) = (@, @)

def oneByOne(): {w :: Int32, h :: Int32} = {w =1, h = 1}

def twoByFour(): {w :: Int32, h :: Int32} = {w = 2, h = 4}

enum Shape {
case Circle(Int32),
case Square(Int32),
case Rectangle({Int32, Int32)

H

def area(s: Shape): Int32 = match s {
case Circle(r) =>3 % (r *r)
case Square(uw) => W *F W
case Rectangle(h, w) => h * w

Tuples and Records

Flix has built-in support for tuples and records.

Flix Playground ® + - O *

« - O @ O B8 nhtips://play-fixdev g = ﬂ o =
Compile & Run P Library Unused Code Website Documentation Standard Library Shareable Link Iy
1 // A Suit type deriving an Eq and ToString instance ~l [~
2~ enum Suit with Eg, ToString { Standard OUtpu‘[
B case Clubs
4 case Hearts
5 case Spades

case Diamonds

b

// A Rank type deriving an Eq and Order instance
18+ enum Rank with Eq, Order {

11 case Number(Int32)
12 case Jack

13 case Queen

14 case King

15 case Ace

16 }

17

12 // A Card type deriving an Egq instance
"% opague type Card with Eq = (Rank, Suit)

28

21 // An instance of ToString for Ranks

22~ instance ToString[Rank] {

23 - pub def toString(x: Rank): String = match x {
24 case Number(n) =» "${n}"

25 case Jack =>» "Jack"

26 case Queen =» "Queen”

27 case King => "King"

28 case Ace => "Ace"

20 1

3@}

31

22 // An instance of ToString for Cards

“- r instance ToString[Card] {

34 - pub def toString(x: Card): String = match x {
35 case Card(r, s) =» "${r} of ${s}"

36 1

37 1}

a8

29 // Simulates a game of War, printing each player’'s turn.

A0~ def playWar(pl: List[Card], p2: List[Card], spoils: List[Card]): Unit & Impure = match (pl, p2) {
41 case (Nil, nNil) =» println("No one has any cards. It's a draw.")

42 case (Nil, _) =» println("Player 1 is out of cards. Player 2 wins!")
43 case (_, Nil) =» println("Player 2 is out of cards. Player 1 wins!")
44 case (cl :: di, c2 :: d2) =»

45 let Card{(ri, _) = ci;

46 let Card(r2, _) = c2;

47 println{"Player 1 plays ${cl1}. Player 2 plays ${c2}."});

48 - if (r1 > r2) {

49 println{"Player 1 wins the battle.");

58 // Add the spoils and losing card to the winner's deck.

51 playWar(dl ::: ¢l :: c2 :: spoils, d2, nNil)

52~ ¥} else if (r2 > ri1) {

53 println("Player 2 wins the battle.");

54 // Add the spoils and losing card to the winner's deck.

55 playWar(dl, d2 ::: ¢l :: c2 :: spoils, Nil)

56~ } else {

57 println{"The battle is a draw. Time for war!");

J/C NN YN F bt ac Fhodn o 2 ndc + +h - air

&«

Programming Flix | Fixpoints b +
&} @ O [9) https://docflix.dev/fixpoints/

Introduction Functions Data Types Lists Records References Arrays Namespaces Concurrency Effects Fixpoints Interoperability Build & Packages Tips & Tricks

A unique feature of Flix is its built-in support for fixpoint computations on constraint on relations and

constraint on lattices.
We assume that the reader is already familiar with Datalog and focus on the Flix specific features.

Using Flix to Solve Constraints on Relations

We can use Flix to solve a fixpoint computation inside a function.

For example, given a set of edges s, a src node, and dst node, compute if there is a path from src to dst.
We can elegantly solve this problem as follows:

def isConnected(s: Set[(Int32, Int32)], src: Int32, dst: Int32): Bool =
let rules = #{
Path(x, y) :- Edge{x, y).
Path(x, z) :- Pathi(x, v), Edge(v, z).

I
let edges = project s into Edge;
let paths = query edges, rules select true from Path(src, dst);

not (paths |> Array.isEmpty)
def main{): Unit & Impure =
let s = Set#{(1, 2), (2, 3), (3, 4), (4, 5)};
let src = 1;
let dst = 5;
if (isConnected(s, src, dst)) {
println(“Found a path between ${src} and ${dst}!")
¥ else {
println("Did not find a path between %{src} and ${dst}!")

The isConnected function behaves like any other function: We can call it with a set of edges (Int32-pairs),
an Tnt32 source node, and an Tnt32 destination node. What is interesting about isConnected is that its

implementation uses a small Datalog program to solve the task at hand.

In the isConnected function, the local variable rules holds a Datalog program fragment that consists of
two rules which define the Path relation. Note that the predicate symbols, Edge and Path do not have to be
explicitly introduced; they are simply used. The local variable edges holds a collection of edge facts that are
obtained by taking all the tuples in the set sand turning them into Edge facts. Next, the local variable
pathsholds the result of computing the fixpoint of the facts and rules (edges and rules) and selecting the
Boolean trueifthereis a Path(src, dst) fact Note that here srcand dst are the lexically-bound function
parameters. Thus, pathsis either an empty array (no paths were found) or a one-element array (a path was

found), and we simply return this fact.

&«

flix

E Prelude
C @

~ Prelude

Add
Applicative
BitwiseAnd
BitwiseMNot
BitwiseOr
BitwiseShl
BitwiseShr
BitwiseXor
Boxable
CommutativeGroup
CommutativeMonoid
CommutativeSemiGroup
Div

Eq

Exp
Foldable
FromString
Functor
Group

Hash
Iterable
JoinLattice
LowerBound
MeetLattice
Mod

Monad
Monoid

Mul

Neg
Newable
Order
PartialOrder
Reducible
Rem

Scoped
SemiGroup
Sub

ToString
Traversable
UpperBound
Boxed

Chain
Choice
Comparison
DelayList
DelayMap

fapiflix.dev/#Prelude w ﬂ @

Prelude

Classes

class Add[a : Type] Source

A type class for addition.

Signatures (hide)

def add(x: a, y: a): a with Add[a] Source

Instances (show)

class Applicative[m : Type — Type] with Functor[m] Source

A type class for functors that support application, i.e. allow to:

« Make an applicative value out of a normal value (embed it into a default context), e.g. embed 5 into Some(5).
» Apply a function-type applicative to a matching argument-type applicative, resulting in an applicative of the function’s result type.

The meaning of the application realized by the ap function is defined by the respective instance. Conceptually this can be understood as applying functions "contained” in the first applicative to arguments in the second applicative, where the possible guantity of
functions/arguments depends on the type m. For example, an Option[a — b] can be None, or contain a function of type 2 — b, and only in the latter case a function is applied. A List[a — bl is an applicative that contains a list of functions, which are all to be
applied to all arguments contained in the arguments list.

A minimal implementation must define point and at least one of ap and 1iftA2 (if 1iftA2 is implemented, ap can be defined based on 1i7tA2 as shown below). If both ap and 117 tA2 are defined, they must be equivalent to their default definitions: ap(f: mla — b
& el, x: m[al): m[b] & ef = LiftA2(identity, f, x) LiftA2{f: a = b — c & e, x: mlal, y: mlbl): mlc] & ef = ap(Functor.map(f, x), v)

Signatures (hide)
def ap[a, ef, b](f: m[a — b & ef], x: m[al): m[b] & ef with Applicative[m] Source
Apply the function-type applicative 7 to the argument-type applicative «.
def point[a](x: a): m[a] with Applicative[m] Source
Definitions (show)

Instances (show)

class BitwiseAnd[a : Type] Source

A type class for bitwise and.

Signatures (hide)

def and(x: a, y: a): a with BitwiseAnd[a] Source

Instances (show)

&«

o flie/flize: The Flix Programming | X +

c @ U 8 &2 hitps;/github.com/fix/fi

O Search or jump to... Pull requests

& flix / flix ' Public

Issues Marketplace Explore

<> Code @ Issues 339 11 pull reguests 24 Y Discussions @ Actions EE] Projects @ Security |~ Insights @ Settings

¥ master ~ P 5branches 45 tags Go to file Add file =

*g magnus-madsen release: 0.28.0 (#3707)

D DD DD EDE

.github/workflows
docs

examples
gradle/wrapper
lib

main
.editorconfig
.gitattributes
.gitignore
AUTHORS.md
LICENSE.md
README.md
build.gradle
gradlew

gradlew.bat

README.md

3093229 31 minutes ago

ci: murder the greetings bot (#3685)

release: 0.28.0 (#3707)

refactor: update signature of main (#3522)

Upgrade to Gradle 7.2 (#2522)

chore: upgrade scopt to 4.0.1 (#3017)

release: 0.28.0 (#3707)

Add .editorconfig (#2676)

chore: add .gitattributes (#2723)

chore: add crash_report_*.txt to .gitignore (#3655)
datalog: add example that merges overlapping intervals, (#3455)
Added license.

chore: update png height (#3225)

feat: use polish notation for table (#3585)

Upgrade to Gradle 7.2 (#2522)

Upgrade to Gradle 7.2 (#2522)

A

) 7.008 commits

5 days ago

31 minutes ago
25 days ago

7 months ago
4 months ago
31 minutes ago
6 months ago
6 months ago
& days ago

last month

7 years ago

3 months ago
15 days ago

7 months ago

7 months ago

4

R

About

Edit Pins @ Unwatch 20

The Flix Programming Language

& flix.dev/

language programming-language

functional jvm logic

flize

hacktoberfest imperative

0 Readme

& View license
vr 1.4k stars
& 20 watching
% 107 forks

Releases 44

O Version 0.28.0 ‘.:Latest:
17 minutes age

+ 43 releases

Packages

Mo packages published
Publish your first package

Contributors 44

@
NGO

+ 33 contributors

208

% Fork 107

Starred

T4k

@ Wrapping Up

Selection of Research Papers

From Datalog to Flix: A Declarative Language for Fixed Points on Lattices |]
Magnus Madsen, Ming-Ho Yee, Ondrej Lhotdk

Fixpoints for the Masses: Programming with First-Class Datalog Constraints |]
Magnus Madsen, Ondrej Lhotdk

Polymorphic Types and Effects with Boolean Unification []

Magnus Madsen, Jaco van de Pol

Safe and Sound Program Analysis with Flix []
Magnus Madsen, Ondrej Lhotdk

Implicit Parameters for Logic Programming []
Magnus Madsen, Ondrej Lhotdk

] You can find all papers at:

Relational Nullable Types with Boolean Unification | :
https://flix.dev/research/

Magnus Madsen, Jaco van de Pol

51

Additional Resources

The Official Flix Website:
The Programming Flix Book:

APl Documentation:

GitHub:

InfoQ Article:

Happy Path Podcast:

52

https://flix.dev/
https://doc.flix.dev/
https://api.flix.dev/
https://github.com/flix/flix
https://tinyurl.com/infoq-flix
https://tinyurl.com/happypath-flix

Summary (1/2)

Flix is a new) , and programming language.

Flix aims to offer a unique combination of features that no other existing language offers.

algebraic data types and pattern matching channel and process-based concurrency
tuples and extensible records [first-class Datalog program values]
parametric polymorphism Hindley-Milner style type inference
higher-kinded types and type classes full tail call elimination
:a polymorphic effect system an extensive standard library
:purity reflection Visual Studio Code support
:Iocal region-based mutation ... and more

53

Summary (2/2)

Flix is a new) , and programming language.

Flix is ready for use!
Flix has a fully-featured Visual Studio Code extension.

Flix has a website, online documentation, and a playground.
The Flix Standard Library is extensive.

Thank You!

Flix is open source, freely available, and ready for use:

54

https://flix.dev/

