
An Introduction to the
Flix Programming Language

MAGNUS MADSEN

Dahl-Nygaard Prize Talk

The Flix Team

2

Magnus Ondřej Jaco

Jonathan Matt Jakob Nina

Thanks to our sponsors:

Outline
An introduction to the Flix programming language:

① First-class Datalog

② Effect system

③ Local mutation

④ Purity reflection

⑤ Design principles

⑥ Ecosystem and tooling

3

The Flix Principle

4

• Functionally (i.e. with immutable data structures)
• Imperatively (i.e. with mutable data structures)
• Declaratively (i.e. as a collection of logic constraints)

In Flix the primary building block is a function. A function maps an input to an output.

Flix allows functions to be written in the most natural and/or efficient style …

… without revealing these implementation to the clients.

First-class
Datalog①

5

Introduction to Datalog
Datalog is a simple, yet surprisingly powerful declarative logic programming language.

◦ A bit like SQL but with recursion.

Datalog has several important properties:
1. Every Datalog program eventually terminates.

2. Every Datalog program has a unique solution.

3. Datalog has efficient and parallel evaluation strategies.

Datalog has successfully been used in a wide-variety of applications:
◦ e.g., program analysis, security analysis, data analytics, bio-informatics.

◦ Datalog has often been used for very specialized applications that have high complexity and/or
performance requirements.

6

Introduction to Datalog (cont’d)

7

Bird("Eagle").
Bird("Gentoo").
Flying("Eagle").

Penguin(x) :- Bird(x), not Flying(x).

Direct("BLL", "FRA").
Direct("FRA", "YYZ").
Direct("YYZ", "YVR").

Connected(src, dst) :- Direct(src, dst).
Connected(src, dst) :-
Connected(src, hop), Direct(hop, dst).

A simple query over two relations:

A recursive query over two relations:

Motivation

8

The Problem: Using Datalog is cumbersome!

• I don’t want to write my entire program in Datalog.
• I don’t want to generate a text file, pass it to a Datalog solver, and parse the result.
• I don’t want to use FFI for a 10-line program.
• I want all the conveniences of a real programming language (a type system, an IDE, tools, etc.)
• I want to write modular and reusable programs.

Key Idea:
Datalog programs as first-class values in a functional programming language.

Example: Datalog in Flix

9

def connected(routes: List[(String, String)]): List[(String, String)] =
let db = project routes into Direct;
let pr = #{

Connected(src, dst) :- Direct(src, dst).
Connected(src, dst) :- Connected(src, hop), Direct(hop, dst).

};
query db, pr select (x, y) from Connected(x, y) |> Array.toList

Example: Polymorphic Datalog

10

def reachable(edges: List[(t, t)], src: t, dst: t): Bool =
let db = project edges into Edge;
let pr = #{

Path(x, y) :- Edge(x, y).
Path(x, z) :- Path(x, y), Edge(y, z).
Reachable() :- Path(src, dst).

};
let result = query db, pr select () from Reachable();
not Array.isEmpty(result)

Example: Lattice Semantics

11

def shortestDist(origin: t, edges: List[(t, Int32, t)]): Map[t, N] =
let db = project edges into Edge;
let pr = #{

Dist(origin; N(0)).
Dist(y; add(d1, d2)) :- Dist(x; d1), Edge(x, d2, y).

};
query db, pr select (x, d) from Dist(x; d) |> Array.toMap

Here 𝑁 = ∞, 0, ≥,min,max

⊥

⊤0

1

∞

⋮

enum N { case N(Int32) }

instance PartialOrder[N] {
def lessEqual(x: N, y: N): Bool = ...

}

// LowerBound, JoinLattice, MeetLattice, ...

① Summary: First-Class Datalog
First-class Datalog program values enable us to use Datalog where it shines: to declaratively
express and solve fixed-point constraints.

◦ We can write functions that internally use Datalog program values.

◦ We can write modular and reusable Datalog programs using polymorphism.

◦ The type system ensures that our Datalog programs are consistent and stratified.

Flix supports constraints on relations, but also constraints on lattices.
◦ We can solve even more fixed-point problems, including program analyses and two-player games.

12

Effect System②

13

Type and Effect System
Flix has a type and effect system based on Hindley-Milner.

◦ The system supports type classes, higher-kinded types, and complete type inference.

The effect system separates pure, impure, and effect polymorphic expressions.
◦ The effect system is the basis for purity reflection.

Tracking purity has several benefits:
◦ It enables programmers to know when equational reasoning holds.

◦ It enables the Flix inliner to make more aggressive, but sound, choices.

◦ It enables the Flix standard library to know when it is safe to parallelize code (more on this later).

14

Purity
We can express that a function is pure:

def add(x: Int32, y: Int32): Int32 \ { } = ...

Here the implementation of add cannot have any side-effects.

We can also express that a higher-order function requires a pure function argument:

def count(f: a -> Bool \ { }, l: List[a]): Int32 \ { } = ...

Here neither f nor count can have any side-effects.

^^^ empty effect

^^^ empty effect set ^^^ empty effect

15

Impurity
We can also express that a function is impure:

def sayHello(name: String): Unit \ { Impure } =
println("Hello ${name}!")

It is a type error to annotate an impure function as pure:

def illegal() : Unit \ { } =
println(“I am impure!")

^^^^^^^ printing is impure

16

Effect Polymorphism
We can express that the effect of a higher-order function depends on its argument:

def map(f: a -> b \ ef, l: List[a]): List[b] \ ef = ...

The effect of map is the same as the effect of f.

^^ effect variable ^^ effect variable

// Pure use of map
List.map(x -> x * x + 42, l)

// Impure use of map
List.map(x -> println(x), l)

17

First-class Functions
We support first-class functions. We can express function composition as:

def >>(f: a -> b \ ef1, g: b -> c \ ef2): a -> c \ {ef1, ef2} = ...

The effect of the returned function is pure if f and g are pure.

^^^^^^^^^ union effect

18

② Summary: Effect System
The type and effect system enables us to write pure, impure, and effect polymorphic functions.

We can use the type and effect system to track and enforce purity:
◦ The Flix standard library enforces that the eq, hash, compare, and toString functions are pure.

◦ The Flix compiler uses purity information during variable and function inlining.

Related Work:
◦ Polymorphic effect systems [Lucassen et al., ‘88]

◦ Region-based memory management [Tofte et al., ‘97]

◦ Programming with algebraic effects and handlers [Plotkin et al., ‘15]

19

Local
Mutation③

20

Local Mutation
We have seen that Flix tracks purity.

◦ As soon as a function touches mutable memory it gets tainted with impurity.

◦ This is cumbersome because impurity then proliferates through the program.

◦ But what if the use of mutation is in some sense “local”.

Can we do better?

💡We associate all mutable data with a region:
◦ Reads and writes to data in a region are precisely tracked by the effect system.

◦ All effects related to a region vanish when the region goes out-of-scope.

21

Example: Sorting

22

///
/// Sort the given list `l` so that elements are ordered from low to
/// high according to their `Order` instance.
///
def sort(l: List[a]): List[a] with Order[a] =

region r {
let arr = List.toArray(l, r);
Array.sort!(arr);
Array.toList(arr)

}

💡 Using an array-based (in place) sort is much faster than any list-based sort.

1. Introduce a new region.
2. Allocate (mutable) data in the region.
3. Do imperative programming.
4. Return immutable data.

Example: Adding Two Numbers

23

///
/// Returns the sum of `x` and `y`.
///
def sum(x: Int32, y: Int32): Int32 \ { } =

region r {
let a = [x, y] @ r;
Array.swap!(0, 1, a);
a[1] + a[0]

}

Example: Swapping Elements

24

///
/// Swap the elements at `i` and `j` in the array `a`.
///
def swap!(i: Int32, j: Int32, a: Array[t, r]): Unit \ { Read(r), Write(r) } =

let x = a[i]; ^ region ^^^^^^^^^^^^^^^^^ effect
let y = a[j];
a[i] = y;
a[j] = x

💡 The type and effect system tracks reads and writes to regions.

☞ The region is part of the array type.

Example: ToString

25

///
/// Returns a String representation of the given list `l`.
///
/// The returned String is of the form x1 :: x2 :: .. :: Nil.
///
def toString(l: List[a]): String with ToString[a] =

region r {
let sb = new StringBuilder(r);
List.foreach(x -> StringBuilder.appendString!("${x} :: ", sb), l);
StringBuilder.appendString!("Nil", sb);
StringBuilder.toString(sb)

}

💡 Using StringBuilders in toString functions is intuitive and efficient.

③ Summary: Local Mutation
Local mutation enables us to write pure functions that use local mutable state.

◦ We can implement functions in imperative style.

◦ We can use imperative style when it is more natural and/or more efficient.

◦ The type and effect system continues to ensure separation of pure and impure code!

💡We can “pretend” to be functional programmers but use imperative style when we want!

We get the best of both worlds!

Related Work:
◦ Linear types can change the world! [Wadler et al., ‘90]

◦ Imperative functional programming [Jones et al., ‘93]

◦ Lazy functional state threads [Jones et al., ‘94]

26

Purity
Reflection④

27

Purity Reflection
Program evaluation in Flix (and most programming languages) is eager and sequential.

◦ But it would be useful if library authors could take advantage of lazy and/or parallel evaluation.

◦ But when is it safe to evaluate a function lazily or in parallel?

Many programming languages have streams:
◦ But the combination of streams and side-effects is a dangerous cocktail.

◦ We risk race conditons, deadlocks, lost and/or re-ordered side effects!

Can we do better?

💡What if we allow data structure operations (map, filter, etc.) to vary their behavior depending
on the purity of their function arguments?

28

Example: Selective Laziness
We can write a map function that uses selective laziness:

def map(f: a -> b & ef, l: DelayList[a]): DelayList[b] & ef =
reifyEff(f) {

case Pure(g) => mapL(g, l)
case _ => mapE(f, l)

}

If f is pure then we use mapL to apply it lazily over the list.

If f is impure then we use mapE to apply it eager over the list (materializing all effects).

29

Example I
The Flix program fragment:

DelayList.range(1, 1_000_000_000) |>
DelayList.map(x -> {println("a"); x + 1}) |>
DelayList.map(x -> {println("b"); x * 2})

Prints one billion a’s followed by one billion b’s.

This takes a while, but ultimately the program terminates.

💡 The a’s are printed before the b’s preserving the order of effects.

30

Example II
The Flix program fragment:

DelayList.range(1, 1_000_000_000) |>
DelayList.map(x -> x + 1) |>
DelayList.map(x -> x * 2) |>
DelayList.head |> println

Prints Some(4) and terminates immediately.

The two map operations are pure, consequently they are applied lazily.

31

Example III
The Flix program fragment:

let count = ref 0;
List.range(1, 1_000_000_000) |>
List.map(x -> x + 1) |>
List.take(1_000) |>
List.map(x -> { count := deref count + 1; x * 2});
println(deref count)

Prints 1000 and terminates very quickly.

The first map operation is applied lazily and the subsequent take operation is applied lazily.

The final map operation is applied eagerly, but only to the first 1000 elements.

32

Example: Selective Parallelism
We can also write a map function that uses selective parallelism:

def mapWithKey(f: (k, v1) -> v2 & ef, t: RBTree[k, v1]): ... =
reifyEff(f) {

case Pure(g) => parMapWithKey(g, t)
case _ => seqMapWithKey(f, t)

}

We use this function in the implementation of the Set and Map data structures.

33

A Fresh Take on Data Transformations

34

Principle: Data structure operations (such as map, filter, ...)

• Use lazy and/or parallel evaluation when given pure function arguments.

• Use eager sequential evaluation when given impure function arguments.

This ensures that side-effects are not lost and that the order of side-effects is preserved.

④ Summary: Purity Reflection
Purity reflection enables higher-order functions to inspect the purity of their function
argument(s) and to vary their behavior based on this information.

We can use this information to implement new and novel data structures:
◦ DelayList a list that is maximally lazy except when given impure functions.

◦ DelayMap a map that is lazy in its values and uses parallel evaluation for bulk operations.

Related Work:
◦ First-class effect reflection for effect-guided programming [Long et al., ‘16]

35

Design
Principles⑤

36

The Flix Design Principles
A set of design choices or design principles collected over time.

Based on:
◦ Discussions on GitHub.

◦ Discussions on other programming language forums.

◦ Perceived mistakes of other programming languages.

◦ Feedback from users.

Listed on the Flix website for reference and to keep us honest.
◦ We have now collected more than 59 such principles.

37

38

Principle: No warnings, only errors.

39

Principle: No unused declarations.

40

Principle: Declaration monotonicity.
namespace A {

def inc(x: Int32): Int32 = x + 1
}

namespace B {
// ...

}

def main(): Int32 =
use A._;
use B._;
inc(1)

41

Ecosystem &
Tooling⑥

42

Visual Studio Code Support

✓ syntax highlighting

✓ inline diagnostics

✓ auto-complete

✓ type and effect hover

✓ find references

✓ jump to definition

✓ rename

✓ code hints

✓ code lenses (e.g. “click to run”)

✓ document symbols

✓ workspace symbols

✓ highlight related symbols

✓ incremental compilation

43

We support most Visual Studio Code features, including:

44

45

46

47

48

49

Wrapping Up⑦

50

Selection of Research Papers
From Datalog to Flix: A Declarative Language for Fixed Points on Lattices [PLDI ‘16]

Magnus Madsen, Ming-Ho Yee, Ondřej Lhoták

Fixpoints for the Masses: Programming with First-Class Datalog Constraints [OOPSLA ‘20]
Magnus Madsen, Ondřej Lhoták

Polymorphic Types and Effects with Boolean Unification [OOPSLA ‘20]
Magnus Madsen, Jaco van de Pol

Safe and Sound Program Analysis with Flix [ISSTA ‘18]
Magnus Madsen, Ondřej Lhoták

Implicit Parameters for Logic Programming [PPDP ‘18]
Magnus Madsen, Ondřej Lhoták

Relational Nullable Types with Boolean Unification [OOPSLA ‘21]
Magnus Madsen, Jaco van de Pol

51

You can find all papers at:
https://flix.dev/research/

Additional Resources
The Official Flix Website: https://flix.dev/

The Programming Flix Book: https://doc.flix.dev/

API Documentation: https://api.flix.dev/

GitHub: https://github.com/flix/flix

InfoQ Article: https://tinyurl.com/infoq-flix

Happy Path Podcast: https://tinyurl.com/happypath-flix

52

https://flix.dev/
https://doc.flix.dev/
https://api.flix.dev/
https://github.com/flix/flix
https://tinyurl.com/infoq-flix
https://tinyurl.com/happypath-flix

Summary (1/2)

• algebraic data types and pattern matching

• tuples and extensible records

• parametric polymorphism

• higher-kinded types and type classes

• a polymorphic effect system

• purity reflection

• local region-based mutation

channel and process-based concurrency

first-class Datalog program values

Hindley-Milner style type inference

full tail call elimination

an extensive standard library

Visual Studio Code support

… and more

53

Flix is a new functional, imperative, and logic programming language.

Flix aims to offer a unique combination of features that no other existing language offers.

Summary (2/2)

Flix is ready for use! Try it out!
◦ Flix has a fully-featured Visual Studio Code extension.

◦ Flix has a website, online documentation, and a playground.

◦ The Flix Standard Library is extensive.

Flix is open source, freely available, and ready for use:

https://flix.dev/

54

Thank You!

Flix is a new functional, imperative, and logic programming language.

https://flix.dev/

