Effectful Programming
in
the Flix Programming Language

Magnus Madsen

Today 2/59

You may be familiar with imperative programming.
You may be familiar with object-oriented programming.

You may be familiar with functional programming.

Today: effect-oriented programming in Flix

If you love types, you are going to love effects!

Flix Team 3/59

~y o

Andreas Jakob

Open Source Contributors

Adam Yasser Tallouzi
Alexander Dybdahl
Troelsen

Andreas Heglingegard
Anna Blume Jakobsen
Anna Krogh

Beinir Ragnuson
Benjamin Dahse

Casper Dalgaard Nielsen
Chanattan Sok

Chenhao Gao

Christian Bonde

Daniel Anker Hermansen
Daniel Welch

Darius Tan

Dylan Do Amaral

Erik Funder Carstensen
Erik Kruuse

Esben Bjerre

Felix Berg

Felix Wiemuth

Frederik Arp Frandsen
Frederik Kirk Kristensen
Herluf Baggesen
Holger Dal Mogensen
Ifaz Kabir

J. Ryan Stinnett

Jacob Harris Cryer Kragh
Jason Mittertreiner
Jesper Skovby

Jim Zhang

Joseph Tan

Justin Fargnoli

Kengo TODA

Liam Palmer

Lionel Mendes

Lukas Rgnn

Lugman Aden

Magnus Holm Rasmussen
Maksim Gusev

Manoj Kumar

Marcus Bach

Miguel Angelo Nicolau
Fialho

Ming-Ho Yee

Nada Amin

Nathan Bedell

Nicola Dardanis

Nina Andrup Pedersen
Ondrej Lhotak

Oskar Haarklou Veileborg
Patrick Bering Tietze
Patrick Lundvig

Paul Butcher

4 [59
Paul Phillips
Quentin Stiévenart
Ramin Zarifi
Ramiro Calle

Rasmus Larsen

Roland Csaszar

Sam Ezeh

Simon Dalgas Christensen
Simon Meldahl Schmidt
Stephen Bastians
Stephen Tetley

Surya Somayyajula
Thomas S¢e Plougsgaard
Xavier deSouza

Yisrael Union

Yukang Xie

Ziyao Wei

Sponsors 5/59

@ INDEPENDENT DIREQC amazon|scence |« STIBOFONEN

DENMARK Digital Research Centre Denmark

Total Funding: €1.1 million

1 Effect-Oriented Programming

What is an Effect System? 7159

An effect system aims to describe the actions of a program.
- Does this function read from the file system?

- Does this function access the network?

- Does this function mutate memory in the heap?

We can use effect systems (i) to support program reasoning, (ii) to enforce safety
properties, and (iii) to enable compiler optimizations.

Type and Effect Systems, Pictorially

Here is a simple function:
def f(x) = x / getCurrentMinute()

What can be said about this function?

- A type system tells us that x has type int and f has type Int -> Int

- An effect system tell us that £ may have the effects {pivByzero, NonDet}.

8/59

Purity (1/2) 9/59

We can express that a function is pure:

def add(x: Int32, y: Int32): Int32 \ { } = ...
// """ empty set effect

Here the implementation of add cannot have any side-effects.

Purity (2/2) 10 /59

We can also require that a function argument is pure:

def count(f: a -> Bool \ { }, 1: List[al): Int32 \ { } = ...
// """ empty effect set

Here £ cannot have any effects.

Effectful Functions 11/59
We can also write a function with a specific effect:

def sayHello(name: String): Unit \ { I0 } =
println("Hello ${name}!") // °~" printing is impure

The 10 effect describes an action that interacts with the outside world.

Effect Safety 12/ 59

We cannot subvert the type and effect system.

For example, if we write:

def helloWorld(): Unit \ { } =
println("Hello World!")

The Flix compiler reports:

>> Unable to unify the effects: 'Pure' and 'IO0'.

2 | println("Hello World!")

ANAAAAAAAAAAAAANAAAAAAAAN

mismatched effects.

Effect Polymorphism 13 /59
We can express that the effects of function depends on its argument:

def map(f: a -> b \ ef, 1: List[a]): List[b] \ ef = ...
// ~" effect variable ~ effect variable

The effects of map are the same as the effects of f:

List.map(x -> x * x + 42, 1) // has the effect { }
List.map(x -> println(x), 1) // has the effect { IO }

Function Composition 14 | 59
We can compose two functions:

def >>(f: a -> b \ efl, g: b ->c \ ef2): a ->c \ efl + ef2 = ...
// effect union ""AAAAAAN

The composed function has the effects of f and g.

For example:
- If f has effect {3 and g has effect {10} then the result is {10}.

- If £ has effect {NonDet} and g has effect {10} then the result is {NonDet, I0}.

Effect Exclusion 15/ 59
We can express a function that excludes a specific effect:

def onException(f: Exception -> Unit \ ef - {Throw}): Unit = ...

Here onException can be called with any function that does not throw.

As another example:

def onMouseDown(f: MouseEvent -> Unit \ ef - {Block}): Unit = ...

Four Kinds of Effects 16 / 59
Flix has four categories of effects:

- Primitive

- Heap

- Library-Defined
- User-Defined

Primitive Effects 17/ 59
In Flix, the current primitive effects are:

Env Exec FsRead FsWrite

Net NonDet Sys 10

2 Heap Effects

Local Mutable Memory 19/ 59

Key Idea: If a function uses mutable memory - that is local to that function -
then the function can be seen as pure from the outside.

We can express this idea as follows:

- We associate all mutable data with a region (lexical scope).

- Reads and writes to data in a region are precisely tracked by the effect system.
- Mutable memory in the region cannot escape the lexical scope.

- When we leave the lexical scope, all heap effects from that scope “disappear”.

Note: This is not borrowing, but there are strong similarities.

Example: MutList (1/2)

Flix has a mutList collection which is similar to e.g. Java’s ArrayList.

The signatures of its functions are:

mod MutList {
def empty(rc: Region[r]): MutList[a, r] \ Heap[r]

def push(x: a, v: MutlList[a, r]): Unit \ Heapl[r]
def pop(v: MutList[a, r]): Option[a] \ Heap[r]

def count(f: a -> Bool \ ef, v: MutList[a, r]): Int32 \ ef + Heapl[r]

20 /59

Example: MutList (2/2) 21/ 59

Here is how we can use a MutList[t, r]:

def main(): Unit \ IO0 =
region rc {
let animals = MutList.empty(rc); // Heap[rc]
MutList.push("Elephant", animals); // Heap|[rc]
MutList.push("Giraffe", animals); // Heap[rc]

MutList.push("Zebra", animals); // Heap[rc]
println(MutList.pop(animals)) // Heap[rc] + IO
} // 10

Prints Some("zebra").

Example: Sorting

/77
/77
///
/77
/77
def

Sort the given list "1° so that elements
are ordered from low to high according
to their “Order’ instance.

sort(l: List[a]): List[a] with Order[a] =
region rc {
let arr = List.toArray(rc, 1);
Array.sort(arr);
Array.tolList(arr)

22 /59

1. Introduce a new region.

2. Allocate (mutable) data in the region.
3. Do imperative programming.

4. Return immutable data.

Upshot: Using an array-based sort is
much faster than any list-based sort.

Example: ToString 23 /59

/17

/// Returns a String representation of the given list “1°.
///

/// The returned String is of the form x1 :: x2 :: .. :: Nil.
/17

def toString(l: List[a]): String with ToString[a] =
region rc {
let sb = StringBuilder.empty(rc);
foreach(x <- 1) {
StringBuilder.appendString("${x} :: ", sb)
Ji5
StringBuilder.appendString("Nil", sb);
StringBuilder.toString(sb)

Using stringBuilders in toString functions is intuitive and efficient.

Summary: Local Mutable Memory 24/ 59
We can use mutable memory inside pure functions. Allows us to:

- implement functions in imperative style.
- use an imperative style when it is more natural and/or more efficient.

We can be functional programmers but use imperative style when we want!

We get the best of both worlds!

3 Algebraic Effects and Handlers

Programming with Effect Handlers 26 / 59
- Write one abstract program.
» Express indirect inputs (e.g. current time) as an effect
» Express indirect outputs (e.g. writing to a file) as an effect

- The type-and-effect system tracks these effects.

- Install different handlers
» One for production
» One for testing
» More for adapting to different APIs

- Enjoy your modular, reusable, testable implementation!

Example: A Small Http Client (1/2) 27 /59

def main(): Unit \ {Net, IO} =
run {
let url = "http://example.com/";
Logger.info("Downloading URL: '${url}'");
match HttpWithResult.get(url, Map.empty()) {
case Result.Ok(response) =>
let file = "data.txt";
Logger.info("Saving response to file: '${file}'");
let body = Http.Response.body(response);
match FileWriteWithResult.write(str = body, file) {
case Result.Ok() =>
Logger.info("Response saved to file: '${file}'")
case Result.Err(err) =>
Logger.fatal("Unable to write file: '${err}'")
}
case Result.Err(err) =>
Logger.fatal("Unable to download URL: '${err}'")
}
} with FileWriteWithResult.runWithIO
with HttpWithResult.runWithIO
with Logger.runWithIO

Example: A Small Http Client (2/2)

def main(): Unit \ {Net, IO} =
run {
7 coas
// ... as before ...
7 oao
} with FileWriteWithResult.runWithIO
with Logger.runWithIO
with handler HttpWithResult {
def request(_method, url, headers, body, resume) = {
let e = IoError(ErrorKind.ConnectionFailed, "Oops!");
resume(Err(e))

Effect handlers work like resumable exceptions.

28 [59

Advantages of Effect Handlers 29/ 59

Effects and handlers can be used to support
modularity, reusability, and testability.

4 Design Principles

The Flix Principles
What is a design principle? | think of them as a social contract:

- What programmers can expect from us, the language designers.

- What we, as language designers, expect from the programmers.
. .

Principled i.e., systematic programming language design.

31/59

Where do the Principles come from? 32/59

Inspired by:

- Discussions on GitHub Issue Tracker
- OCaml Discuss, Rust internals, ...

Posted on the Flix website for the
public.

A mechanism for consensus building

and conflict resolution:

- Reduces tension during discussions
and code review.

- Separates technical discussions from
language design discussions.

What is a Principle?

Each principle has up to four
components:

- A name and a short description
- A rationale

- A discussion

- A hypothesis

A principle should be decidable, i.e. we
must be able to determine if a language
satisfies it.

33/59
Category Count
Syntax 4
Static Semantics 8
Correctness and Safety 13
Compiler Messages
Standard Library
Miscellaneous
Total 41

Syntax 34 /59

Principle 4: Mirrored term and type syntax.

Flix should have consistent term and type-level syntax:

* A function application is written as f(a, b, c) whereas a type application is written as f[a, b, c].
* Afunction expression is written as x -> x + 1 whereas a function type is written as Int32 -> Int32.

* Atuple expression is written as (true, 12345) whereas a tuple type is written as (Bool, Int32).
- and so on

Correctness and Safety (1/2) 35/59

Principle 13: No warnings, only errors.

- Warnings can be ignored or turned off.
- Allowing both sends mixed messages: when is a warning serious?

Correctness and Safety (2/2) 36 / 59

Principle 18: No Useless Expressions
Principle 20: No Variable Shadowing

Principle 21: No Unused Declarations

Example: Correctness and Safety

def reverse(l: List[t]): List[t] = region rc {
let m = MutDeque.empty(rc);
// = Shadowed name.
def loop(l0) = match 1 {
// ~”~ Unused local variable.
case Nil => MutDeque.tolList(m)
case n :: m =>
// ~ Shadowing name.
MutDeque.pushFront(n);

[/ "ONNONOANOARAAANAANAN Useless expression,
// under-applied function.
loop (m)
I
loop (1)

37/59

Standard Library 38/59

Principle 34: No Dangerous Functions.

- Functions should be total (non-crashing)
- Functions should encourage good programming style.

x | Principles

flix.dev/principles/

Home GetStarted VSCode Principles

Design Principles

Documentation FAQ Blog Contribute

Internships

We believe that the development of a programming language should follow a set of principles. That is, when a design decision is made there
should exist some rationale for why that decision was made. By outlining these principles, as we develop Flix, we hope to keep ourselves honest
and to communicate the kind of language Flix aspires to be.

Many of these ideas and principles come from languages that have inspired Flix, including Ada, Elm, F#, Go, Haskell, OCaml, Rust, and Scala.

Update: The Flix Principles has been published in a paper at Onward! '22. Read it here: The Principles of the Flix Programming Language.

Language Principles

Simple is not easy

We believe in Rich Hickey's creed: simple
is not easy. We prefer a language that
gets things right to one that makes
things easy. Such a language might take
longer to learn in the short run, but its.
simplicity pays off in the long run.

Everything is an expression

Flix is a functional language and
embraces the idea that everything
should be an expression. Flix has no
local variable declarations or if-then-else
statements, instead it has let-bindings
and if-then-else expressions. However,
Flix does not take this idea as far as the

Human-readable errors

In the spirit of Elm and Rust, Flix aims to
have human readable and
understandable compiler messages.
Messages should describe the problem
in detail and provide information about
the context, including suggestions for
how to correct the problem.

Private by default

Flix embraces the principle of least
privilege. In Flix, declarations are hidden
by default (i.e. private) and cannot be
accessed from outside of their
namespace (or sub-namespaces). We
believe it is important that programmers

No null value

Flix does not have the null value. The
null value is now widely considered a
mistake and languages such as C#, Dart,
Kotlin and Scala are scrambling to adopt
mechanisms to ensure non-nuliness. In
Flix, we adopt the standard solution
from functional languages which is to
represent the absence of a value using
the option type. This solution is simple
to understand, works well, and
guarantees the absence of dreaded
NullPointerExceptions.

No implicit coercions

In Flix, a value of one type is never

5 Oh, and one more thing ...

Graph Queries

Motivation: | want to go on
vacation, but where can | go?

| can fly from Aarhus airport to a
few airports in Europe. From
there | can continue my journey.

41/ 59

NORWAY §
| /SWEDEN
I/ esTon
|/
. S
UNITED! Y __uTHUANIA
KINGDOM ~ ~Q
///
/"// BELARUS
IRELAND) ///
Q NETHERYAKYS \POLAND
// | cErmANY \
BELOfUM \ \‘
/] £ UKRAINE
/) \ A\
(e AUSTRIA Luncary\ MoLDOVA
FRANCE \ o\ \
/ SLOVENIA Royania
/" / Lo\ \
/ /| | . ASANMARIN 9 \ ST)
/ ANDPRRA! ITALY \ BULGARIA
/ / ALBANIA
/) @ Q N
SPAIN GREECE TURKEY

uuuuuuuuu
CYPRUS'

Example: Embedded Datalog 42 [59

We want to solve a classic graph reachability problem.

We can do so elegantly using Flix's support for embedded Datalog:

/17
/// Computes all airports reachable from origin.
/17
def reachable(origin: String, routes: List[(String, String)]): List[String] =
let db = inject routes into Route;
let pr = #{
Path(src, dst) :- Route(src, dst).
Path(src, dst) :- Path(src, hop), Route(hop, dst).
I
query db, pr select dst from Path(origin, dst) |> Foldable.tolist

We can easily extend this program with more constraints.

Summary: Embedded Datalog 43 | 59
Flix supports embedded Datalog programs as first-class values.

- We can implement functions using inject and query.
- Datalog with negation is a very expressive logic language.
- Embedded Datalog programs are fully integrated into the language.

Upshot: We can use Datalog where it really shines: to answer graph queries.

Reflections on Programming in Flix 44 | 59
Flix allows functions to be written in the most natural and/or efficient style:

- Functionally
- Imperatively
- Declaratively

.. without revealing these implementation to the clients.

6 Ecosystem and Tooling

B

F. The Flix Programming La: X

+

O B hip

Home GetStarted VSCode Principles Documentation FAQ

Flix —
A powerful effect-oriented programming language

Flix is a principled effect-oriented functional, imperative, and logic
programming language developed at Aarhus University and by a
community of open source contributors.

Why effect-oriented? And why Flix?

Why Effects? Effect systems represent the next major evolution in
statically typed programming languages. By explicitly modeling side
effects, effect-oriented programming enforces modularity and helps
program reasoning. User-defined effects and handlers
programmers to implement their own control structures.

allow

Why Flix? We claim that of all the upcoming effect-oriented
programming languages, Flix offers the most complete language
implementation, the most extensive standard library, the most
detailed documentation, and the best tool support.

Moreover, Flix builds on proven programming language technology,
including: algebraic data types and pattern matching, extensible
records, traits, higher-kinded types, associated types and effects,
structured concurrency, and more,

Algebraic Data Types and Pattern Matching

Algebraic data types and pattern matching are the bread-and-
butter of functional programming and are supported by Flix with
minimal fuss.

Blog

Contribute Internships

‘ File Information

[/ Getting information on files with Flix.
def main(): Unit |\ 10 =
let f = “README.nd"

/] Check 1f the file 'README.nd' exists.
match File.exists(f) {
case Ok(exist) =
println(’The file ${f} exists: ${exist}.”)

case Err(nsg) == println("An error occurred with message: ${msg}")
b

/1 Get statistics of the file "READHE.nd".
match File.stat(f) {

println(*The size of §(f} is:
println("The creation time of ${f} is: ${stats.creationTime}.”)

1
case Err(msg) => println("An error occurred with message: ${nsg}’)

enum shape [
case Circle(Int32),
case Square(1nt32),
case Rectangle(Int32, Int32)

def area(s: Shape): Int3.
case Circle(r)
.

B FlixPlayground

C Flix.dev

mpile & Run ‘Aswmple Card Game Simulation v

/1 A Suit type deriving an Eq and ToString instance
enun Suit with Eq, ToString {

case Clubs

case Hearts

case Spades

case Dianonds

Website ~Documentation — Standard Library ~ Shareable Link Ity

Standard Output

/1 A Rank type deriving an Eq and Order instance
enun Rank with Eq, Order

case Number(Int32)

case Jack

case Queen

case King

case Ace

/1 A card type deriving an Eq instance
enun Card(Rank, Suit) with Eq

/I An instance of Tostring for Ranks
instance ToString[Rank]
pub def toString(x: Rank): String = match x {
case Rank.Number(n)
case Rank.Jack
case Rank.Queen
case Rank.king
case Rank.Ace

H

/I An instance of Tostring for Cards
instance ToString[Card]
pub def tostring(x: Card): String = match x {
case Card.Card(r, s) = "${r} of ${s}"

H

/i sinulates a game of War, printing each player's turn
def playWar(p1: List[Card], p2: List[Card], spoils: List[Card]): Unit \ I0 = match (p1, p2) {
case (Nil, Nil) => println("No one has any cards. It's a draw.”
i = println("Flayer 1 is out of cards. Player 2 wins!")
println("Player 2 is out of cards. Player 1 wins!")
» €2 3 d2)
let Card.Card(rl, _) = €1
let Card.Card(r2, _) = c2;
println(*Player 1 plays ${c1}. Player 2 plays ${c2}.");
if (r1>r2) {

») File Edit Selection View - &« > £ flix-json 8- BEOoEm- = x

® README.md = Jsonable.flix X m -

src > £ Jsonable.flix > ...
mod Json
use Json.Path.Path;
use Json.Path.{!!};
use JsonElement.{JsonObject, JsonArray, JsonString, JsonNumber, JsonBool, JsonNull}
use JsonError.JsonError

® 0

%7
||

pub enum JsonError(Path, Set[String]) with Eq

B

pub trait ToJson[a] {
pub def tolson(x: a): JsonElement

}

&]

pub trait FromJson[a] {
pub def fromJsonAt(p: Path, x: JsonElement): Result[JsonError, aj
pub def fromJson(x: JsonElement): Result[JsonError, al = Json.FromJson.fromJsonAt(Path.Root, x)
pub def fromNullableJsonAt(p: Path, x: JsonElement): Result[JsonError, Option[al] = match x {
case JsonNull => 0k(None)
case y => Json.FromJson.fromJsonAt(p, y)
|> Result.mapErr(match JsonError(path, expected) -> JsonError(path, Set.insert("null", expe¢
|> Result.map(Some)

}

pub def fromNullableJson(x: JsonElement): Result[JsonError, Option[al] = Json.FromJson.fromNullable

pub lawful trait Jsonablel[a] with ToJson[a], FromJson[a] {
law inverse: forall (x: a) with E[a] {
X |> Json.ToJson.toldson |> Json.FromJson.fromlson == 0k(x)
$° docs & ®O0AO0 #£ LiveShare - NORMAL-- @ Matthew Lutze (2 yearsago) Ln6,Col1 Spaces:4 UTF8 LF {} Flix [

W)

=1 Neovim

mod Json.Write {
use Json.JsonElement
use Json.JsonElement.{JsonObject, JsonArray, JsonString, JsonNumber, JsonBool, JsonNull}
use Json.Utils.escape
/// Returns the string c
pub def tecompactString(json: JsonElement): String = match json {
case JsonObject(map) =>
let contents = ma
|> Map.joinWith((k, v) -> escape(k) + ":" + toCompactString(v),
"{" + contents + "}"
case JsonArray(list) =>
let contents = list |> List.j
"[" + contents + "]"
case Jsonstring(s) => escaﬂe(s)

to the given written without extraneous s

inWith(toCompactString, ",

case JsonNumber(n) => "S${n
case JsonBool(b) => "S${b}" def escape(s: String): String
case JsonNull => "null”

Converts the given string into a JSON string, including surrounding quotes.

esponding to the given JSON

pub def toPrettyString(tab: Int32, json: annElement)' String = match json {
case JsonObject(map) if Map.isEmpty(map) => "{}"
case JsonObject(map) =>
let contents map
|> Map.joinWith((k, v) -> escape(k) + ": " + toPrettyString(tab, v), ",\n");
"{\n" + string.indent(tab, contents) + "}"
case JsonArray(Nil) "t
case JsonArray(list) =>
let contents = list |> List.joinWith(toPrettyString(tab), ",\n");
"[\n" + String.indent(tab, contents) + "]"
case Jsonstring(s) => escape(s)
case JsonNumber(n) => "S${n}"
case JsonBool(b) => "
case JsonNull =>

./src/Write. flix

17,35

ALl

B IF Introduction to Flix- Proc X

Cc C Flix.dev
1. Introduction to Flix = < Q 8 0
2. Getting Started
BT Introduction to Flix
2.2. Next Steps
3. Data Types Flix is a principled functional, logic, and imperative programming language developed at Aarhus
3.1, Primitives University and by a community of open source contributors in collaboration with researchers from
.- the University of Waterloo, from the University of Tubingen, and from the University of Copenhagen.
.2, Tuples
3.3. Enums Flix is inspired by OCaml and Haskell with ideas from Rust and Scala. Flix looks like Scala, but its type
3.4.Type Allases system is based on Hindley-Milner which supports complete type inference. Flix is a state-of-the-art
programming language with multiple innovative features, including:
4. Functions
5. Immutable Data « a polymorphic type and effect system with full type inference.
00 « region-based local mutable memory.
: « user-defined effects and handlers.
s 2lChainzlandectar= « higher-kinded traits with associated types and effects.
5.3. Sets and Maps » embedded first-class Datalog programming. >
5.4. Records . .
Flix compiles to efficient VM bytecode, runs on the Java Virtual Machine, and supports full tail call
6. Mutable Data elimination. Flix has interoperability with Java and can use JVM classes and methods. Hence the
6.1. Reglons entire Java ecosystem is available from within Flix.

6.2. References Flix aims to have world-class Visual Studio Code support. The Flix Visual Studio Cede extension uses

6.3. Arrays the real Flix compiler hence there is always a 1:1 correspondence between the Flix language and
6.4. Structs what is reported in the editor. The advantages are many: (a) diagnostics are always exact, (b) code
6.5. Collections navigation "just works", and (c) refactorings are always correct.
7. Control Structures

7.1.If-Then-Else

e
7.2. Pattern Matching Look 'n’ Feel
73 Foreath Here are a few programs to illustrate the look and feel of Flix:
7.4. Foreach-vield

7.5. Monadic For-Yield This program illustrates the use of algebraic data types and pattern matching:

B F Flix|Prelude

« > C
flix .-

Modules

BigDecimal
Bigint
Bool

CodePoint
Coerce

Collectable
‘CommutativeGroup
‘CommutativeMonoid
CommutativeSemiGroup
Comparison

Console

DelayList

DelayMap

Div

Down

Eff

Env

Environment

Eq

Exec

Exit

FileRead
FileReadWithResult
Filewrite
FilewriteWithResult
Filterable

P

flix.dev

Prelude

Type Aliases

type alias FileIO - FsRead + Fsir

Atype alias for the FileRead and Fil

type alias Heap[h:

Atype alias used while we transition to a proper Heap effect.

type alias static = 10

Static denotes the region of global lifetime.

Definitions

def !>(x: a, f: a = Unit \ ef):

Pipes the given value x into the function f.

Given a value x and a function f returns x.

def ++(x: a, y: a): a with SemiGroup[al

Alias for SemiGroup. combine

B © Flix/flix: The Flix Program X +

O B == https://github.com/Flix/Flix

= O flix /' flix

<> Code (O Issues 610 11 Pullrequests 39

=r fi Public

§* master - | ¥ 15Branches © 77 Tags

@ mlutze test: remove fuzzing sources after each test (#10182)

8 _github/workflows
I .ideasinspectionProfiles
I docs

M examples

I gradle/wrapper
B main

[.editorconfig

O gitattributes

[gitignore

[AUTHORS.md

[J LICENSE.md

[README.md

O build.gradle

Q Type

® Actions 3 Projects @ Security |« Insights 3 Settings

5P EditPins + | ©Watch 24 ~

Q Gotofile t Add file ~ <> Code

f011147 11 hours ago) 10,829 Commits

feat: add new workflow for completion invariant (#10188) 3 days ago
feat: add IDEA inspection profile (#10118) 2 weeks ago
feat: release 0.58.1 (#10031) last month
feat: require parentheses for datalog-if-guard (#9811) last month
feat: upgrade Gradle to 8.5 (#6929) 2years ago
test: remove fuzzing sources after each test (#10182) 11 hours ago
chore: fix .editorconfig typo (#6611) 2years ago
chore: add .gitattributes (#2723) 4years ago
chore: add tilde-suffixed files to gitignore (#9721) 2 months ago
feat: add Array.copyInto (related to #6292) (#10081) 2 weeks ago
Added license. 10 years ago
fix: remove fixed height from README img (#9618) 2months ago

feat: add new workflow for completion invariant (#10188) 3 days ago

Y Fork 160~ starred 23k~

About @&
The Flix Programming Language
@ flix.dew/

language programming-language
functional jum logic flix

hackioberfest imperative

Readme

View license
Activity

Custom properties
2.3k stars

24 watching

<O 0+

160 forks

Report repository

Releases 75

© Version 0.58.1 (Latest)
last month

+75 releases

Visual Studio Code / LSP Support

v syntax highlighting

/ inline diagnostics

/ auto-complete

/ type and effect hover
v find references

v find implementations

7/ jump to definition

v/ code snippets

v/ automatic rename

/ code hints

v/ code lenses

v document symbols
v/ workspace symbols

/ highlight related symbols

53 /59

Modern Compiler Architecture 54 | 59

Flix has a modern compiler which is resilient, incremental, and parallel.

Parallel Speedup (1 vs. 10 threads, non-incremental)

10
o
iy
7 7'°’%.8x“
Throughput s x
g 5.2x
H 2 54 M
frontend: 140,382 lines/sec | o sax
front + backend: 60,159 lines/sec 3
]
St e m B B b o§ 3 5 >
Pirerrpritiesead
I EUE“UﬁS
SEE I DN
£ 7

7 Wrapping Up

Project Contributors & Statistics 56 / 59

5,500+ Merged Pull Requests (PRs)
3,300+ Resolved Issues (Tickets)
70+ Contributors
250,000+ Lines in Compiler Codebase WATERLOO
EBERE ’\) R W
UNIVERSITAT D

TUBINGEN

Selection of Research Papers

Associated Effects: Flexible Abstractions for Effectful Programming
- Matthew Lutze, Magnus Madsen

With or Without You: Programming with Effect Exclusion
- Matthew Lutze, Magnus Madsen, Philipp Schuster, Jonathan Brachthduser

The Principles of the Flix Programming Language
- Magnus Madsen

Polymorphic Types and Effects with Boolean Unification
- Magnus Madsen, Jaco van de Pol

Fixpoints for the Masses: Programming with First-Class Datalog Constraints
- Magnus Madsen, Ondrej Lhotak

57 / 59

[PLDI 24]

[ICFP ‘23]

[ONWARD ‘22]

[0OPSLA ‘20]

[0OPSLA ‘20]

Summary 58 / 59
Flix is a powerful effect-oriented programming language.

Flix aims to offer a unique combination of features:
Features Tooling

- algebraic data types and pattern matching
- traits with higher-kinded types

- a polymorphic type and effect system

- algebraic effects and handlers

- embedded Datalog

- Runs on the JVM

documentation and examples
extensive standard library

Visual Studio Code support
generic LSP Support

parallel and incremental compiler
package manager

AN N Y N NN

We are moving towards version 1.0 and we want your feedback:

https://flix.dev/

https://flix.dev/

Additional Resources 59 [59

The Official Flix Website: https:/ [flix.dev

The Programming Flix Book https:/ /docflix.dev

AP| Documentation https:/ [api.flix.dev

Online Playground https:/ /play.flix.dev

GitHub https:/ /github.com /flix/flix
Twitter https:/ /[twitter.com/flixlang

Gitter https:/ /gitter.im/flix/Lobby

https://flix.dev
https://doc.flix.dev
https://api.flix.dev
https://play.flix.dev
https://github.com/flix/flix
https://twitter.com/flixlang
https://gitter.im/flix/Lobby

	Today
	Flix Team
	Open Source Contributors
	Sponsors
	Effect-Oriented Programming
	What is an Effect System?
	Type and Effect Systems, Pictorially
	Purity (1/2)
	Purity (2/2)
	Effectful Functions
	Effect Safety
	Effect Polymorphism
	Function Composition
	Effect Exclusion
	Four Kinds of Effects
	Primitive Effects

	Heap Effects
	Local Mutable Memory
	Example: MutList (1/2)
	Example: MutList (2/2)
	Example: Sorting
	Example: ToString
	Summary: Local Mutable Memory

	Algebraic Effects and Handlers
	Programming with Effect Handlers
	Example: A Small Http Client (1/2)
	Example: A Small Http Client (2/2)
	Advantages of Effect Handlers

	Design Principles
	The Flix Principles
	Where do the Principles come from?
	What is a Principle?
	Syntax
	Correctness and Safety (1/2)
	Correctness and Safety (2/2)
	Example: Correctness and Safety
	Standard Library
	Principles

	Oh, and one more thing …
	Graph Queries
	Example: Embedded Datalog
	Summary: Embedded Datalog
	Reflections on Programming in Flix

	Ecosystem and Tooling
	Visual Studio Code / LSP Support
	Modern Compiler Architecture

	Wrapping Up
	Project Contributors & Statistics
	Selection of Research Papers
	Summary
	Additional Resources

