
Effectful Programming
in
the Flix Programming Language

Magnus Madsen

Today 2 / 59
You may be familiar with imperative programming.

You may be familiar with object-oriented programming.

You may be familiar with functional programming.

Today: effect-oriented programming in Flix

If you love types, you are going to love effects!

Flix Team 3 / 59

Magnus Matthew Jonathan

Andreas Jakob

Open Source Contributors 4 / 59

Adam Yasser Tallouzi
Alexander Dybdahl
Troelsen
Andreas Heglingegård
Anna Blume Jakobsen
Anna Krogh
Beinir Ragnuson
Benjamin Dahse
Casper Dalgaard Nielsen
Chanattan Sok
Chenhao Gao
Christian Bonde
Daniel Anker Hermansen
Daniel Welch
Darius Tan
Dylan Do Amaral
Erik Funder Carstensen
Erik Kruuse

Esben Bjerre
Felix Berg
Felix Wiemuth
Frederik Arp Frandsen
Frederik Kirk Kristensen
Herluf Baggesen
Holger Dal Mogensen
Ifaz Kabir
J. Ryan Stinnett
Jacob Harris Cryer Kragh
Jason Mittertreiner
Jesper Skovby
Jim Zhang
Joseph Tan
Justin Fargnoli
Kengo TODA
Liam Palmer
Lionel Mendes

Lukas Rønn
Luqman Aden
Magnus Holm Rasmussen
Maksim Gusev
Manoj Kumar
Marcus Bach
Miguel Angelo Nicolau
Fialho
Ming-Ho Yee
Nada Amin
Nathan Bedell
Nicola Dardanis
Nina Andrup Pedersen
Ondřej Lhoták
Oskar Haarklou Veileborg
Patrick Bering Tietze
Patrick Lundvig
Paul Butcher

Paul Phillips
Quentin Stiévenart
Ramin Zarifi
Ramiro Calle
Rasmus Larsen
Roland Csaszar
Sam Ezeh
Simon Dalgas Christensen
Simon Meldahl Schmidt
Stephen Bastians
Stephen Tetley
Surya Somayyajula
Thomas Søe Plougsgaard
Xavier deSouza
Yisrael Union
Yukang Xie
Ziyao Wei

Sponsors 5 / 59

Total Funding: €1.1 million

1 Effect-Oriented Programming

What is an Effect System? 7 / 59
An effect system aims to describe the actions of a program.
• Does this function read from the file system?
• Does this function access the network?
• Does this function mutate memory in the heap?

We can use effect systems (i) to support program reasoning, (ii) to enforce safety
properties, and (iii) to enable compiler optimizations.

Type and Effect Systems, Pictorially 8 / 59
Here is a simple function:

def f(x) = x / getCurrentMinute()

What can be said about this function?

• A type system tells us that x has type Int and f has type Int -> Int

• An effect system tell us that f may have the effects {DivByZero, NonDet} .

Purity (1/2) 9 / 59
We can express that a function is pure:

def add(x: Int32, y: Int32): Int32 \ { } = ...
 // ^^^ empty set effect

Here the implementation of add cannot have any side-effects.

Purity (2/2) 10 / 59
We can also require that a function argument is pure:

def count(f: a -> Bool \ { }, l: List[a]): Int32 \ { } = ...
 // ^^^ empty effect set

Here f cannot have any effects.

Effectful Functions 11 / 59
We can also write a function with a specific effect:

def sayHello(name: String): Unit \ { IO } =
 println("Hello ${name}!") // ^^ printing is impure

The IO effect describes an action that interacts with the outside world.

Effect Safety 12 / 59
We cannot subvert the type and effect system.

For example, if we write:

def helloWorld(): Unit \ { } =
 println("Hello World!")

The Flix compiler reports:

>> Unable to unify the effects: 'Pure' and 'IO'.

2 | println("Hello World!")
 ^^^^^^^^^^^^^^^^^^^^^^^
 mismatched effects.

Effect Polymorphism 13 / 59
We can express that the effects of function depends on its argument:

def map(f: a -> b \ ef, l: List[a]): List[b] \ ef = ...
 // ^^ effect variable ^^ effect variable

The effects of map are the same as the effects of f :

List.map(x -> x * x + 42, l) // has the effect { }
List.map(x -> println(x), l) // has the effect { IO }

Function Composition 14 / 59
We can compose two functions:

def >>(f: a -> b \ ef1, g: b -> c \ ef2): a -> c \ ef1 + ef2 = ...
 // effect union ^^^^^^^^^

The composed function has the effects of f and g .

For example:
• If f has effect {} and g has effect {IO} then the result is {IO} .
• If f has effect {NonDet} and g has effect {IO} then the result is {NonDet, IO} .

Effect Exclusion 15 / 59
We can express a function that excludes a specific effect:

def onException(f: Exception -> Unit \ ef - {Throw}): Unit = ...

Here onException can be called with any function that does not throw.

As another example:

def onMouseDown(f: MouseEvent -> Unit \ ef - {Block}): Unit = ...

Four Kinds of Effects 16 / 59
Flix has four categories of effects:

• Primitive
• Heap
• Library-Defined
• User-Defined

Primitive Effects 17 / 59
In Flix, the current primitive effects are:

Env Exec FsRead FsWrite

Net NonDet Sys IO

2 Heap Effects

Local Mutable Memory 19 / 59
Key Idea: If a function uses mutable memory – that is local to that function –
then the function can be seen as pure from the outside.

We can express this idea as follows:

• We associate all mutable data with a region (lexical scope).
• Reads and writes to data in a region are precisely tracked by the effect system.
• Mutable memory in the region cannot escape the lexical scope.
• When we leave the lexical scope, all heap effects from that scope “disappear”.

Note: This is not borrowing, but there are strong similarities.

Example: MutList (1/2) 20 / 59
Flix has a MutList collection which is similar to e.g. Java’s ArrayList .

The signatures of its functions are:

mod MutList {
 def empty(rc: Region[r]): MutList[a, r] \ Heap[r]

 def push(x: a, v: MutList[a, r]): Unit \ Heap[r]

 def pop(v: MutList[a, r]): Option[a] \ Heap[r]

 def count(f: a -> Bool \ ef, v: MutList[a, r]): Int32 \ ef + Heap[r]
}

Example: MutList (2/2) 21 / 59
Here is how we can use a MutList[t, r] :

def main(): Unit \ IO =
 region rc {
 let animals = MutList.empty(rc); // Heap[rc]
 MutList.push("Elephant", animals); // Heap[rc]
 MutList.push("Giraffe", animals); // Heap[rc]
 MutList.push("Zebra", animals); // Heap[rc]
 println(MutList.pop(animals)) // Heap[rc] + IO
 } // IO

Prints Some("Zebra") .

Example: Sorting 22 / 59

///
/// Sort the given list `l` so that elements
/// are ordered from low to high according
/// to their `Order` instance.
///
def sort(l: List[a]): List[a] with Order[a] =
 region rc {
 let arr = List.toArray(rc, l);
 Array.sort(arr);
 Array.toList(arr)
 }

1. Introduce a new region.
2. Allocate (mutable) data in the region.
3. Do imperative programming.
4. Return immutable data.

Upshot: Using an array-based sort is
much faster than any list-based sort.

Example: ToString 23 / 59

///
/// Returns a String representation of the given list `l`.
///
/// The returned String is of the form x1 :: x2 :: .. :: Nil.
///
def toString(l: List[a]): String with ToString[a] =
 region rc {
 let sb = StringBuilder.empty(rc);
 foreach(x <- l) {
 StringBuilder.appendString("${x} :: ", sb)
 };
 StringBuilder.appendString("Nil", sb);
 StringBuilder.toString(sb)
 }

Using StringBuilders in toString functions is intuitive and efficient.

Summary: Local Mutable Memory 24 / 59
We can use mutable memory inside pure functions. Allows us to:

• implement functions in imperative style.
• use an imperative style when it is more natural and/or more efficient.

We can be functional programmers but use imperative style when we want!

We get the best of both worlds!

3 Algebraic Effects and Handlers

Programming with Effect Handlers 26 / 59
• Write one abstract program.

‣ Express indirect inputs (e.g. current time) as an effect
‣ Express indirect outputs (e.g. writing to a file) as an effect

• The type-and-effect system tracks these effects.

• Install different handlers
‣ One for production
‣ One for testing
‣ More for adapting to different APIs

• Enjoy your modular, reusable, testable implementation!

Example: A Small Http Client (1/2) 27 / 59

def main(): Unit \ {Net, IO} =
 run {
 let url = "http://example.com/";
 Logger.info("Downloading URL: '${url}'");
 match HttpWithResult.get(url, Map.empty()) {
 case Result.Ok(response) =>
 let file = "data.txt";
 Logger.info("Saving response to file: '${file}'");
 let body = Http.Response.body(response);
 match FileWriteWithResult.write(str = body, file) {
 case Result.Ok(_) =>
 Logger.info("Response saved to file: '${file}'")
 case Result.Err(err) =>
 Logger.fatal("Unable to write file: '${err}'")
 }
 case Result.Err(err) =>
 Logger.fatal("Unable to download URL: '${err}'")
 }
 } with FileWriteWithResult.runWithIO
 with HttpWithResult.runWithIO
 with Logger.runWithIO

Example: A Small Http Client (2/2) 28 / 59

def main(): Unit \ {Net, IO} =
 run {
 // ...
 // ... as before ...
 // ...
 } with FileWriteWithResult.runWithIO
 with Logger.runWithIO
 with handler HttpWithResult {
 def request(_method, _url, _headers, _body, resume) = {
 let e = IoError(ErrorKind.ConnectionFailed, "Oops!");
 resume(Err(e))
 }
 }

Effect handlers work like resumable exceptions.

Advantages of Effect Handlers 29 / 59

Effects and handlers can be used to support
modularity, reusability, and testability.

4 Design Principles

The Flix Principles 31 / 59
What is a design principle? I think of them as a social contract:

• What programmers can expect from us, the language designers.
• What we, as language designers, expect from the programmers.

Good programming language design

Principled i.e., systematic programming language design.

Where do the Principles come from? 32 / 59

Inspired by:

• Discussions on GitHub Issue Tracker
• OCaml Discuss, Rust internals, …

Posted on the Flix website for the
public.

A mechanism for consensus building
and conflict resolution:
• Reduces tension during discussions

and code review.
• Separates technical discussions from

language design discussions.

What is a Principle? 33 / 59

Each principle has up to four
components:
• A name and a short description
• A rationale
• A discussion
• A hypothesis

A principle should be decidable, i.e. we
must be able to determine if a language
satisfies it.

Category Count
Syntax 4
Static Semantics 8
Correctness and Safety 13
Compiler Messages 6
Standard Library 8
Miscellaneous 2
Total 41

Syntax 34 / 59

Principle 4: Mirrored term and type syntax.
Flix should have consistent term and type-level syntax:

• A function application is written as f(a, b, c) whereas a type application is written as f[a, b, c] .
• A function expression is written as x -> x + 1 whereas a function type is written as Int32 -> Int32 .
• A tuple expression is written as (true, 12345) whereas a tuple type is written as (Bool, Int32) .
• and so on

Correctness and Safety (1/2) 35 / 59

Principle 13: No warnings, only errors.
• Warnings can be ignored or turned off.
• Allowing both sends mixed messages: when is a warning serious?

Correctness and Safety (2/2) 36 / 59

Principle 18: No Useless Expressions

Principle 20: No Variable Shadowing

Principle 21: No Unused Declarations

Example: Correctness and Safety 37 / 59

def reverse(l: List[t]): List[t] = region rc {
 let m = MutDeque.empty(rc);
 // ^ Shadowed name.
 def loop(l0) = match l {
 // ^^ Unused local variable.
 case Nil => MutDeque.toList(m)
 case n :: m =>
 // ^ Shadowing name.
 MutDeque.pushFront(n);
 // ^^^^^^^^^^^^^^^^^^^^^ Useless expression,
 // under-applied function.
 loop(m)
 };
 loop(l)
}

Standard Library 38 / 59

Principle 34: No Dangerous Functions.
• Functions should be total (non-crashing)
• Functions should encourage good programming style.

Principles 39 / 59

5 Oh, and one more thing …

Graph Queries 41 / 59

Motivation: I want to go on
vacation, but where can I go?

I can fly from Aarhus airport to a
few airports in Europe. From
there I can continue my journey.

Example: Embedded Datalog 42 / 59
We want to solve a classic graph reachability problem.

We can do so elegantly using Flix’s support for embedded Datalog:

///
/// Computes all airports reachable from origin.
///
def reachable(origin: String, routes: List[(String, String)]): List[String] =
 let db = inject routes into Route;
 let pr = #{
 Path(src, dst) :- Route(src, dst).
 Path(src, dst) :- Path(src, hop), Route(hop, dst).
 };
 query db, pr select dst from Path(origin, dst) |> Foldable.toList

We can easily extend this program with more constraints.

Summary: Embedded Datalog 43 / 59
Flix supports embedded Datalog programs as first-class values.

• We can implement functions using inject and query .
• Datalog with negation is a very expressive logic language.
• Embedded Datalog programs are fully integrated into the language.

Upshot: We can use Datalog where it really shines: to answer graph queries.

Reflections on Programming in Flix 44 / 59
Flix allows functions to be written in the most natural and/or efficient style:

• Functionally (i.e. with immutable data structures)
• Imperatively (i.e. with mutable data structures)
• Declaratively (i.e. as a collection of logic constraints)

… without revealing these implementation to the clients.

6 Ecosystem and Tooling

Reflections on Programming in Flix (iii) 46 / 59

Reflections on Programming in Flix (iv) 47 / 59

Reflections on Programming in Flix (v) 48 / 59

Reflections on Programming in Flix (vi) 49 / 59

Reflections on Programming in Flix (vii) 50 / 59

Reflections on Programming in Flix (viii) 51 / 59

Reflections on Programming in Flix (ix) 52 / 59

Visual Studio Code / LSP Support 53 / 59

✔ syntax highlighting

✔ inline diagnostics

✔ auto-complete

✔ type and effect hover

✔ find references

✔ find implementations

✔ jump to definition

✔ code snippets

✔ automatic rename

✔ code hints

✔ code lenses

✔ document symbols

✔ workspace symbols

✔ highlight related symbols

Modern Compiler Architecture 54 / 59

Flix has a modern compiler which is resilient, incremental, and parallel.

Throughput
frontend: 140,382 lines/sec
front + backend: 60,159 lines/sec

(On Apple M2 Pro with a 10-core CPU running on OpenJDK 21)

7 Wrapping Up

Project Contributors & Statistics 56 / 59

5,500+ Merged Pull Requests (PRs)
3,300+ Resolved Issues (Tickets)

70+ Contributors
250,000+ Lines in Compiler Codebase

Selection of Research Papers 57 / 59

Associated Effects: Flexible Abstractions for Effectful Programming [PLDI ‘24]
• Matthew Lutze, Magnus Madsen

With or Without You: Programming with Effect Exclusion [ICFP ‘23]
• Matthew Lutze, Magnus Madsen, Philipp Schuster, Jonathan Brachthäuser

The Principles of the Flix Programming Language [ONWARD ‘22]
• Magnus Madsen

Polymorphic Types and Effects with Boolean Unification [OOPSLA ‘20]
• Magnus Madsen, Jaco van de Pol

Fixpoints for the Masses: Programming with First-Class Datalog Constraints [OOPSLA ‘20]
• Magnus Madsen, Ondřej Lhoták

Summary 58 / 59
Flix is a powerful effect-oriented programming language.

Flix aims to offer a unique combination of features:

Features
• algebraic data types and pattern matching
• traits with higher-kinded types
• a polymorphic type and effect system
• algebraic effects and handlers
• embedded Datalog
• Runs on the JVM

Tooling
✔ documentation and examples
✔ extensive standard library
✔ Visual Studio Code support
✔ generic LSP Support
✔ parallel and incremental compiler
✔ package manager

We are moving towards version 1.0 and we want your feedback:

https://flix.dev/

https://flix.dev/

Additional Resources 59 / 59

The Official Flix Website: https://flix.dev
The Programming Flix Book https://doc.flix.dev
API Documentation https://api.flix.dev
Online Playground https://play.flix.dev
GitHub https://github.com/flix/flix
Twitter https://twitter.com/flixlang
Gitter https://gitter.im/flix/Lobby

https://flix.dev
https://doc.flix.dev
https://api.flix.dev
https://play.flix.dev
https://github.com/flix/flix
https://twitter.com/flixlang
https://gitter.im/flix/Lobby

	Today
	Flix Team
	Open Source Contributors
	Sponsors
	Effect-Oriented Programming
	What is an Effect System?
	Type and Effect Systems, Pictorially
	Purity (1/2)
	Purity (2/2)
	Effectful Functions
	Effect Safety
	Effect Polymorphism
	Function Composition
	Effect Exclusion
	Four Kinds of Effects
	Primitive Effects

	Heap Effects
	Local Mutable Memory
	Example: MutList (1/2)
	Example: MutList (2/2)
	Example: Sorting
	Example: ToString
	Summary: Local Mutable Memory

	Algebraic Effects and Handlers
	Programming with Effect Handlers
	Example: A Small Http Client (1/2)
	Example: A Small Http Client (2/2)
	Advantages of Effect Handlers

	Design Principles
	The Flix Principles
	Where do the Principles come from?
	What is a Principle?
	Syntax
	Correctness and Safety (1/2)
	Correctness and Safety (2/2)
	Example: Correctness and Safety
	Standard Library
	Principles

	Oh, and one more thing …
	Graph Queries
	Example: Embedded Datalog
	Summary: Embedded Datalog
	Reflections on Programming in Flix

	Ecosystem and Tooling
	Visual Studio Code / LSP Support
	Modern Compiler Architecture

	Wrapping Up
	Project Contributors & Statistics
	Selection of Research Papers
	Summary
	Additional Resources

