
An Introduction to
Effectful Programming in Flix

Magnus Madsen

Today 2 / 57
You may be familiar with imperative programming.

You may be familiar with object-oriented programming.

You may be familiar with functional programming.

Today: effect-oriented programming in Flix

If you love types, you are going to love effects!

Flix Team 3 / 57

Magnus Matthew Jonathan

Andreas Jakob

Open Source Contributors 4 / 57

Adam Yasser Tallouzi
Alexander Dybdahl
Troelsen
Andreas Heglingegård
Anna Blume Jakobsen
Anna Krogh
Beinir Ragnuson
Benjamin Dahse
Casper Dalgaard Nielsen
Chanattan Sok
Chenhao Gao
Christian Bonde
Daniel Anker Hermansen
Daniel Welch
Darius Tan
Dylan Do Amaral
Erik Funder Carstensen
Erik Kruuse

Esben Bjerre
Felix Berg
Felix Wiemuth
Frederik Arp Frandsen
Frederik Kirk Kristensen
Herluf Baggesen
Holger Dal Mogensen
Ifaz Kabir
J. Ryan Stinnett
Jacob Harris Cryer Kragh
Jason Mittertreiner
Jesper Skovby
Jim Zhang
Joseph Tan
Justin Fargnoli
Kengo TODA
Liam Palmer
Lionel Mendes

Lukas Rønn
Luqman Aden
Magnus Holm Rasmussen
Maksim Gusev
Manoj Kumar
Marcus Bach
Miguel Angelo Nicolau
Fialho
Ming-Ho Yee
Nada Amin
Nathan Bedell
Nicola Dardanis
Nina Andrup Pedersen
Ondřej Lhoták
Oskar Haarklou Veileborg
Patrick Bering Tietze
Patrick Lundvig
Paul Butcher

Paul Phillips
Quentin Stiévenart
Ramin Zarifi
Ramiro Calle
Rasmus Larsen
Roland Csaszar
Sam Ezeh
Simon Dalgas Christensen
Simon Meldahl Schmidt
Stephen Bastians
Stephen Tetley
Surya Somayyajula
Thomas Søe Plougsgaard
Xavier deSouza
Yisrael Union
Yukang Xie
Ziyao Wei

1 Effect-Oriented Programming

What is an Effect System? 6 / 57
An effect system aims to describe the actions of a program.
• Does this function read from the file system?
• Does this function access the network?
• Does this function mutate memory in the heap?

We can use effect systems
1. to support program reasoning
2. to enforce safety properties
3. to enable compiler optimizations

Type and Effect Systems, Pictorially 7 / 57
Here is a simple function:

def f(x) = x / getCurrentMinute()

What can be said about this function?

• A type system tells us that x has type Int and f has type Int -> Int

• An effect system tell us that f may have the effects {DivByZero, NonDet} .

Purity (1/2) 8 / 57
We can express that a function is pure:

def add(x: Int32, y: Int32): Int32 \ { } = ...
 // ^^^ empty set effect

Here the implementation of add cannot have any side-effects.

Purity (2/2) 9 / 57
We can also require that a function argument is pure:

def count(f: a -> Bool \ { }, l: List[a]): Int32 \ { } = ...
 // ^^^ empty effect set

Here f cannot have any effects.

Effectful Functions 10 / 57
We can also write a function with a specific effect:

def sayHello(name: String): Unit \ { IO } =
 println("Hello ${name}!") // ^^ printing is impure

The IO effect describes an action that interacts with the outside world.

Effect Safety 11 / 57
We cannot subvert the type and effect system.

For example, if we write:

def helloWorld(): Unit \ { } =
 println("Hello World!")

The Flix compiler reports:

>> Unable to unify the effects: 'Pure' and 'IO'.

2 | println("Hello World!")
 ^^^^^^^^^^^^^^^^^^^^^^^
 mismatched effects.

Effect Polymorphism 12 / 57
We can express that the effects of function depend on its argument:

def map(f: a -> b \ ef, l: List[a]): List[b] \ ef = ...
 // ^^ effect variable ^^ effect variable

The effects of map are the same as the effects of f :

List.map(x -> x * x + 42, l) // has the effect { }
List.map(x -> println(x), l) // has the effect { IO }

Function Composition 13 / 57
We can compose two functions:

def >>(f: a -> b \ ef1, g: b -> c \ ef2): a -> c \ ef1 + ef2 = ...
 // effect union ^^^^^^^^^

The composed function has the effects of f and g .

For example:
• If f has effect {} and g has effect {IO} then the result is {IO} .
• If f has effect {NonDet} and g has effect {IO} then the result is {NonDet, IO} .

Effect Exclusion 14 / 57
We can express a function that excludes a specific effect:

def onException(f: Exception -> Unit \ ef - {Throw}): Unit = ...

Here onException can be called with any function that does not throw.

As another example:

def onMouseDown(f: MouseEvent -> Unit \ ef - {Block}): Unit = ...

Four Kinds of Effects 15 / 57
Flix has four categories of effects:

• Primitive
• Heap
• Library-Defined
• User-Defined

Primitive Effects 16 / 57
In Flix, the current primitive effects are:

Env Exec FsRead FsWrite

Net NonDet Sys IO

2 Heap Effects

Local Mutable Memory 18 / 57

Key Idea: If a function uses mutable memory “local to that
function” then we can view it as being pure.

Example: Sorting 19 / 57

///
/// Sort the given list `l` so that elements
/// are ordered from low to high according
/// to their `Order` instance.
///
def sort(l: List[a]): List[a] with Order[a] =
 region rc {
 let arr = List.toArray(rc, l);
 Array.sort(arr);
 Array.toList(arr)
 }

1. Introduce a new region.
2. Allocate (mutable) data in the region.
3. Do imperative programming.
4. Return immutable data.

Upshot: Using an array-based sort is
much faster than any list-based sort.

Example: MutList 20 / 57
Here is how we can use a MutList[t, r] :

def main(): Unit \ IO =
 region rc {
 let animals = MutList.empty(rc); // Heap[rc]
 MutList.push("Elephant", animals); // Heap[rc]
 MutList.push("Giraffe", animals); // Heap[rc]
 MutList.push("Zebra", animals); // Heap[rc]
 println(MutList.pop(animals)) // Heap[rc] + IO
 } // IO

Prints Some("Zebra") .

Example: MutList (2/2) 21 / 57
The API of MutList is:

mod MutList {
 def empty(rc: Region[r]): MutList[a, r] \ Heap[r]

 def push(x: a, v: MutList[a, r]): Unit \ Heap[r]

 def pop(v: MutList[a, r]): Option[a] \ Heap[r]

 def count(f: a -> Bool \ ef, v: MutList[a, r]): Int32 \ ef + Heap[r]
}

Summary: Local Mutable Memory 22 / 57
We can use mutable memory inside pure functions. Allows us to:

• implement functions in imperative style.
• use an imperative style when it is more natural and/or more efficient.

We can be functional programmers but use imperative style when we want!

We get the best of both worlds!

3 Associated Effects

Adding Numbers 24 / 57
We can write a function to add two integers:

def add(x: Int32, y: Int32): Int32 = ...

We can also write a function to add two floating-points:

def add(x: Float32, y: Float32): Float32 = ...

Abstracting over Addition 25 / 57
We can abstract over addition with a trait (type class):

trait Add[t] {
 def add(x: t, y: t): t
}

instance Add[Int32] {
 def add(x: Int32, y: Int32): Int32 = ...
}

instance Add[Float32] {
 def add(x: Float32, y: Float32): Float32 = ...
}

Upshot: We can reuse the + symbol as an alias for Add.add .

The Problem 26 / 57
What happens when we get to division?

def div(x: Int32, y: Int32): Int32 \ {DivByZero} = ...
 // ^^^^^^^^^ potential exception

But also:

def div(x: Float32, y: Float32): Float32 = ...

Oops!

The effect behavior of integer and floating-point division is different!

Q: How can we write a common abstraction for division?

Associated Effects 27 / 57
We can use an associated effect!
• An associated effect is an abstract effect member of a trait.

We change the Div trait to:

trait Add[t] {
 type Aef: Eff // associated effect member
 def add(x: t, y: t): t \ Aef
}

Back to Division 28 / 57
We can now write implementations for integer and floating-point division:

instance Add[Int32] {
 type Aef = {DivByZero}
 def add(x: Int32, y: Int32): Int32 \ DivByZero = ...
}

instance Add[Float32] {
 type Aef = {}
 def add(x: Float32, y: Float32): Float32 \ {} = ...
}

Indexable 29 / 57

trait Indexable[t] {
 type Idx: Type
 type Elm: Type
 type Aef: Eff
 def get(t: t, i: Idx): Elm \ Aef
}

instance Indexable[List[t]] {
 type Idx = Int32
 type Elm = t
 type Aef = {OutOfBounds}
}

instance Indexable[MutMap[k, v, r]] {
 type Idx = k
 type Elm = v
 type Aef = {Heap[r], OutOfBounds}
}

Summary: Associated Effects 30 / 57
An associated effect is an abstract effect member of a trait.

Each trait instance specifies the effect.

Associated effects arise when abstracting over:

• partial and total functions
• immutable and mutable data
• resources

4 Effects and Handlers

Programming with Effect Handlers 32 / 57
Write one abstract program.
• Express indirect inputs (e.g. current time) as an effect
• Express indirect outputs (e.g. writing to a file) as an effect

The type-and-effect system tracks these effects.

Install different handlers
• One for production
• One for testing
• More for adapting to different APIs

Enjoy your modular, reusable, testable implementation!

Example: A Small Http Client (1/2) 33 / 57

def main(): Unit \ {Net, IO} =
 run {
 let url = "http://example.com/";
 Logger.info("Downloading URL: '${url}'");
 match HttpWithResult.get(url, Map.empty()) {
 case Result.Ok(response) =>
 let file = "data.txt";
 Logger.info("Saving response to file: '${file}'");
 let body = Http.Response.body(response);
 match FileWriteWithResult.write(str = body, file) {
 case Result.Ok(_) =>
 Logger.info("Response saved to file: '${file}'")
 case Result.Err(err) =>
 Logger.fatal("Unable to write file: '${err}'")
 }
 case Result.Err(err) =>
 Logger.fatal("Unable to download URL: '${err}'")
 }
 } with FileWriteWithResult.runWithIO
 with HttpWithResult.runWithIO
 with Logger.runWithIO

Example: A Small Http Client (2/2) 34 / 57

def main(): Unit \ {Net, IO} =
 run {
 // ...
 // ... as before ...
 // ...
 } with FileWriteWithResult.runWithIO
 with Logger.runWithIO
 with handler HttpWithResult {
 def request(_method, _url, _headers, _body, resume) = {
 let e = IoError(ErrorKind.ConnectionFailed, "Oops!");
 resume(Err(e))
 }
 }

Effect handlers work like resumable exceptions.

Advantages of Effect Handlers 35 / 57

Effects and handlers can be used to support
modularity, reusability, and testability.

Effects in Flix 36 / 57

Flix: An effect-oriented programming language.

Recap:

• primitive effects, heap effects, and effects with handlers
• effect polymorphism and effect exclusion
• associated effects

5 But wait, there is more…

Graph Queries 38 / 57

Motivation: I want to go on
vacation, but where can I go?

I can fly from Aarhus airport to a
few airports in Europe. From
there I can continue my journey.

Example: Embedded Datalog 39 / 57
We want to solve a classic graph reachability problem.

We can do so elegantly using Flix’s support for embedded Datalog:

///
/// Computes all airports reachable from origin.
///
def reachable(origin: String, routes: List[(String, String)]): List[String] =
 let db = inject routes into Route;
 let pr = #{
 Path(src, dst) :- Route(src, dst).
 Path(src, dst) :- Path(src, hop), Route(hop, dst).
 };
 query db, pr select dst from Path(origin, dst) |> Foldable.toList

We can easily extend this program with more constraints.

Summary: Embedded Datalog 40 / 57
Flix supports embedded Datalog programs as first-class values.

• We can implement functions using inject and query .
• Datalog with negation is a very expressive logic language.
• Embedded Datalog programs are fully integrated into the language.

Upshot: We can use Datalog where it really shines: to answer graph queries.

Reflections on Programming in Flix 41 / 57
Flix allows functions to be written in the most natural and/or efficient style:

• Functionally (i.e. with immutable data structures)
• Imperatively (i.e. with mutable data structures)
• Declaratively (i.e. as a collection of logic constraints)

… without revealing these implementation to the clients.

6 Ecosystem and Tooling

Reflections on Programming in Flix (iii) 43 / 57

Reflections on Programming in Flix (iv) 44 / 57

Reflections on Programming in Flix (v) 45 / 57

Reflections on Programming in Flix (vi) 46 / 57

Reflections on Programming in Flix (vii) 47 / 57

Reflections on Programming in Flix (viii) 48 / 57

Reflections on Programming in Flix (ix) 49 / 57

Visual Studio Code / LSP Support 50 / 57

✔ syntax highlighting

✔ inline diagnostics

✔ auto-complete

✔ type and effect hover

✔ find references

✔ find implementations

✔ jump to definition

✔ code snippets

✔ automatic rename

✔ code hints

✔ code lenses

✔ document symbols

✔ workspace symbols

✔ highlight related symbols

Modern Compiler Architecture 51 / 57

Flix has a modern compiler which is resilient, incremental, and parallel.

Throughput
frontend: 140,382 lines/sec
front + backend: 60,159 lines/sec

(On Apple M2 Pro with a 10-core CPU running on OpenJDK 21)

7 Wrapping Up

Project Contributors & Statistics 53 / 57

5,500+ Merged Pull Requests (PRs)
3,300+ Resolved Issues (Tickets)

70+ Contributors
250,000+ Lines in Compiler Codebase

Research Foundations (short excerpt) 54 / 57
Region-Based Memory Management [Inf. Comput. ‘97]
• Mads Tofte, Jean-Pierre Talpin

Handlers of Algebraic Effects [ESOP ‘09]
• Gordon Plotkin, Matija Pretnar

Koka: Programming with Row Polymorphic Effect Types [MSFP ‘14]
• Daan Leijen

Boolean Unification – The Story so Far [J. Sym. Comput. ‘89]
• Ursula Martin, Tobias Nipkow

How to make ad-hoc polymorphism less ad hoc [POPL ‘89]
• Philip Wadler, Stephen Blot

Associated Type Synonyms [ICFP ‘05]
• Manuel M. T. Chakravarty, Gabriele Keller, Simon Peyton Jones

Foundations of Deductive Databases and Logic Programming [MKP ‘88]
• Jack Minker et al.

Selection of our Research 55 / 57

Associated Effects: Flexible Abstractions for Effectful Programming [PLDI ‘24]
• Matthew Lutze, Magnus Madsen

With or Without You: Programming with Effect Exclusion [ICFP ‘23]
• Matthew Lutze, Magnus Madsen, Philipp Schuster, Jonathan Brachthäuser

The Principles of the Flix Programming Language [ONWARD ‘22]
• Magnus Madsen

Polymorphic Types and Effects with Boolean Unification [OOPSLA ‘20]
• Magnus Madsen, Jaco van de Pol

Fixpoints for the Masses: Programming with First-Class Datalog Constraints [OOPSLA ‘20]
• Magnus Madsen, Ondřej Lhoták

Summary 56 / 57
Flix is a powerful effect-oriented programming language.

Flix aims to offer a unique combination of features:

Features
• algebraic data types and pattern matching
• traits with higher-kinded types
• a polymorphic type and effect system
• algebraic effects and handlers
• embedded Datalog
• Runs on the JVM

Tooling
✔ documentation and examples
✔ extensive standard library
✔ Visual Studio Code support
✔ generic LSP Support
✔ parallel and incremental compiler
✔ package manager

We are moving towards version 1.0 and we want your feedback:

https://flix.dev/

https://flix.dev/

Additional Resources 57 / 57

The Official Flix Website: https://flix.dev
The Programming Flix Book https://doc.flix.dev
API Documentation https://api.flix.dev
Online Playground https://play.flix.dev
GitHub https://github.com/flix/flix
Twitter https://twitter.com/flixlang
Gitter https://gitter.im/flix/Lobby

https://flix.dev
https://doc.flix.dev
https://api.flix.dev
https://play.flix.dev
https://github.com/flix/flix
https://twitter.com/flixlang
https://gitter.im/flix/Lobby

	Today
	Flix Team
	Open Source Contributors
	Effect-Oriented Programming
	What is an Effect System?
	Type and Effect Systems, Pictorially
	Purity (1/2)
	Purity (2/2)
	Effectful Functions
	Effect Safety
	Effect Polymorphism
	Function Composition
	Effect Exclusion
	Four Kinds of Effects
	Primitive Effects

	Heap Effects
	Local Mutable Memory
	Example: Sorting
	Example: MutList
	Example: MutList (2/2)
	Summary: Local Mutable Memory

	Associated Effects
	Adding Numbers
	Abstracting over Addition
	The Problem
	Associated Effects
	Back to Division
	Indexable
	Summary: Associated Effects

	Effects and Handlers
	Programming with Effect Handlers
	Example: A Small Http Client (1/2)
	Example: A Small Http Client (2/2)
	Advantages of Effect Handlers
	Effects in Flix

	But wait, there is more…
	Graph Queries
	Example: Embedded Datalog
	Summary: Embedded Datalog
	Reflections on Programming in Flix

	Ecosystem and Tooling
	Visual Studio Code / LSP Support
	Modern Compiler Architecture

	Wrapping Up
	Project Contributors & Statistics
	Research Foundations (short excerpt)
	Selection of our Research
	Summary
	Additional Resources

